Jump to content

Sodium amide: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
nitrogen-> nitrogen dioxide as the equation and link show
Citation bot (talk | contribs)
Misc citation tidying. | Use this bot. Report bugs. | #UCB_CommandLine
 
(40 intermediate revisions by 22 users not shown)
Line 1: Line 1:
{{Chembox
{{Chembox
| Verifiedfields = changed
|Verifiedfields = changed
| Watchedfields = changed
|Watchedfields = changed
| verifiedrevid = 265528656
|verifiedrevid = 265528656
| ImageFile = Sodium-amide-2D-ionic.svg
|ImageFile1 = Sodium amide.png
|ImageFile1_Ref =
| ImageFile_Ref = {{Chemboximage|correct|??}}
| ImageSize =
|ImageName1 =
|ImageFile2 = Sodium-amide-3D-balls-B.png
| ImageName = Structural formula of sodium amide
|ImageFile2_Ref = {{Chemboximage|correct|??}}
| ImageFile1 = Sodium-amide-3D-balls-B.png
|ImageName2 = Ball and stick, unit cell model of sodium amide
| ImageFile1_Ref = {{Chemboximage|correct|??}}
|IUPACName = Sodium amide, sodium azanide<ref>{{GoldBookRef |title=amides |file=A00266}}</ref>
| ImageSize1 =
|OtherNames = Sodamide
| ImageName1 = Ball and stick, unit cell model of sodium amide
| IUPACName = Sodium amide, sodium azanide<ref>http://goldbook.iupac.org/A00266.html</ref>
| SystematicName =
| OtherNames = Sodamide
|Section1={{Chembox Identifiers
|Section1={{Chembox Identifiers
| CASNo = 7782-92-5
|CASNo = 7782-92-5
| CASNo_Ref = {{cascite|correct|CAS}}
|CASNo_Ref = {{cascite|correct|CAS}}
|UNII_Ref = {{fdacite|correct|FDA}}
| PubChem = 24533
|UNII = 5DB3G6PX9D
| ChemSpiderID = 22940
|PubChem = 24533
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}}
|ChEBI = 176791
| EINECS = 231-971-0
|ChemSpiderID = 22940
| UNNumber = 1390
|ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}}
| SMILES = [NH2-].[Na+]
|EINECS = 231-971-0
| StdInChI = 1S/H2N.Na/h1H2;/q-1;+1
|UNNumber = 1390
| StdInChI_Ref = {{stdinchicite|changed|chemspider}}
|SMILES = [Na]N
| StdInChIKey = ODZPKZBBUMBTMG-UHFFFAOYSA-N
|SMILES2 = [NH2-].[Na+]
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}}}
|StdInChI = 1S/H2N.Na/h1H2;/q-1;+1
|StdInChI_Ref = {{stdinchicite|changed|chemspider}}
|StdInChIKey = ODZPKZBBUMBTMG-UHFFFAOYSA-N
|StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}}}
|Section2={{Chembox Properties
|Section2={{Chembox Properties
| Formula = NaNH<sub>2</sub>
|Formula = {{chem2|NaNH2}}
|Na=1|N=1|H=2
| MolarMass = 39.01 g mol<sup>−1</sup>
| Appearance = Colourless crystals
|Appearance = Colourless crystals
| Odor = ammonia-like
|Odor = Ammonia-like
| Density = 1.39 g cm<sup>−3</sup>
|Density = 1.39 g/cm<sup>3</sup>
| MeltingPtC = 210
|MeltingPtC = 210
| BoilingPtC = 400
|BoilingPtC = 400
| Solubility = reacts
|Solubility = Reacts
| SolubleOther = 0.004 g/100 mL (liquid ammonia), reacts in [[ethanol]]
|SolubleOther = 40 mg/L (liquid ammonia), reacts with [[ethanol]]
| pKa = 38 ([[ammonia|conjugate acid]]) <ref>{{ cite journal |author1=Buncel, E. |author2=Menon, B. | title = Carbanion mechanisms: VII. Metallation of hydrocarbon acids by potassium amide and potassium methylamide in tetrahydrofuran and the relative hydride acidities | journal = Journal of Organometallic Chemistry | year = 1977 | volume = 141 | issue = 1 | pages = 1–7 | doi = 10.1016/S0022-328X(00)90661-2 }}</ref>
|pKa = 38 ([[ammonia|conjugate acid]])<ref>{{cite journal |author1=Buncel, E. |author2=Menon, B. |title=Carbanion mechanisms: VII. Metallation of hydrocarbon acids by potassium amide and potassium methylamide in tetrahydrofuran and the relative hydride acidities |journal=Journal of Organometallic Chemistry |year=1977 |volume=141 |issue=1 |pages=1–7 |doi=10.1016/S0022-328X(00)90661-2}}</ref>
}}
}}
|Section3={{Chembox Structure
|Section3={{Chembox Structure
|CrystalStruct = orthorhombic
| Coordination =
| CrystalStruct = orthorhombic
}}
}}
|Section5={{Chembox Thermochemistry
|Section4={{Chembox Thermochemistry
| DeltaHf = -118.8 kJ/mol
|DeltaHf = -118.8 kJ/mol
| DeltaGf = -59 kJ/mol
|DeltaGf = -59 kJ/mol
| Entropy = 76.9 J/mol K
|Entropy = 76.9 J/(mol·K)
| HeatCapacity = 66.15 J/mol K
|HeatCapacity = 66.15 J/(mol·K)
}}
|Section7={{Chembox Hazards
| NFPA-H = 3
| NFPA-F = 2
| NFPA-R = 3
| NFPA-S = W
| FlashPtC = 4.44
| AutoignitionPtC = 450
}}
|Section8={{Chembox Related
| OtherAnions = [[Sodium bis(trimethylsilyl)amide]]
| OtherCations = [[Lithium amide]] <br> [[Potassium amide]]
| OtherCompounds = [[Ammonia]]
}}
}}
}}
|Section5={{Chembox Hazards
'''Sodium amide''', commonly called '''sodamide''' (systematic name '''sodium azanide'''), is the [[inorganic compound]] with the [[chemical formula|formula]] NaNH<sub>2</sub>. It is a [[salt (chemistry)|salt]] composed of the sodium cation and the [[azanide]] anion. This solid, which is dangerously reactive toward water, is white, but commercial samples are typically gray due to the presence of small quantities of metallic iron from the manufacturing process. Such impurities do not usually affect the utility of the [[reagent]].{{citation needed|date=September 2015}} NaNH<sub>2</sub> conducts electricity in the fused state, its conductance being similar to that of NaOH in a similar state. NaNH<sub>2</sub> has been widely employed as a strong base in [[organic synthesis]].
|NFPA-H = 3
|NFPA-F = 2
|NFPA-R = 3
|NFPA-S = W
|FlashPtC = 4.44
|AutoignitionPtC = 450
}}
|Section6={{Chembox Related
|OtherAnions = [[Sodium bis(trimethylsilyl)amide]]
|OtherCations = [[Lithium amide]]<br>[[Potassium amide]]
|OtherCompounds = [[Ammonia]]
}}
}}
'''Sodium amide''', commonly called '''sodamide''' (systematic name '''sodium azanide'''), is the [[inorganic compound]] with the [[chemical formula|formula]] {{chem2|NaNH2}}. It is a [[salt (chemistry)|salt]] composed of the sodium cation and the [[azanide]] anion. This solid, which is dangerously reactive toward water, is white, but commercial samples are typically gray due to the presence of small quantities of metallic iron from the manufacturing process. Such impurities do not usually affect the utility of the [[reagent]].{{citation needed|date=September 2015}} {{chem2|NaNH2}} conducts electricity in the fused state, its conductance being similar to that of NaOH in a similar state. {{chem2|NaNH2}} has been widely employed as a [[strong base]] in [[organic synthesis]].


==Preparation and structure==
==Preparation and structure==
Sodium amide can be prepared by the reaction of [[sodium]] with ammonia gas,<ref>{{ OrgSynth | author = Bergstrom, F. W. | title = Sodium amide | year = 1955 | collvol = 3 | collvolpages = 778 | prep = cv3p0778 }}</ref> but it is usually prepared by the reaction in [[liquid ammonia]] using [[iron(III) nitrate]] as a [[catalyst]]. The reaction is fastest at the boiling point of the ammonia, c. −33&nbsp;°C. An [[electride]], [Na(NH<sub>3</sub>)<sub>6</sub>]<sup>+</sup>e<sup>−</sup>, is formed as a [[reaction intermediate]].<ref>{{ cite journal |author1=Greenlee, K. W. |author2=Henne, A. L. |title = Sodium Amide | journal = Inorganic Syntheses | year = 1946 | volume = 2 | pages = 128–135 | doi = 10.1002/9780470132333.ch38 }}</ref>
Sodium amide can be prepared by the reaction of [[sodium]] with ammonia gas,<ref>{{OrgSynth |author=Bergstrom, F. W. |title=Sodium amide |year=1955 |collvol=3 |collvolpages=778 |prep=cv3p0778}}</ref> but it is usually prepared by the reaction in [[liquid ammonia]] using [[iron(III) nitrate]] as a [[catalyst]]. The reaction is fastest at the boiling point of the ammonia, c. −33&nbsp;°C. An [[electride]], {{chem2|[Na(NH3)6]+e−}}, is formed as a [[reaction intermediate]].<ref>{{cite book |author1=Greenlee, K. W. |author2=Henne, A. L. |title=Inorganic Syntheses |chapter=Sodium Amide |year=1946 |volume=2 |pages=128–135 |doi=10.1002/9780470132333.ch38 |isbn=9780470132333}}</ref>

:2 Na + 2 NH<sub>3</sub> → 2 NaNH<sub>2</sub> + H<sub>2</sub>
:{{chem2|2 Na + 2 NH3 → 2 NaNH2 + H2}}


NaNH<sub>2</sub> is a salt-like material and as such, crystallizes as an infinite polymer.<ref>{{ cite journal |author1=Zalkin, A. |author2=Templeton, D. H. | title = The Crystal Structure Of Sodium Amide | journal = Journal of Physical Chemistry | year = 1956 | volume = 60 | issue = 6 | pages = 821–823 | doi = 10.1021/j150540a042 }}</ref> The geometry about sodium is tetrahedral.<ref>{{ cite book | author = Wells, A. F. | year = 1984 | title = Structural Inorganic Chemistry | location = Oxford | publisher = Clarendon Press | isbn = 0-19-855370-6 }}</ref> In ammonia, NaNH<sub>2</sub> forms conductive solutions, consistent with the presence of Na(NH<sub>3</sub>)<sub>6</sub><sup>+</sup> and NH<sub>2</sub><sup>−</sup> ions.
{{chem2|NaNH2}} is a salt-like material and as such, crystallizes as an infinite polymer.<ref>{{cite journal |author1=Zalkin, A. |author2=Templeton, D. H. |title=The Crystal Structure Of Sodium Amide |journal=Journal of Physical Chemistry |year=1956 |volume=60 |issue=6 |pages=821–823 |doi=10.1021/j150540a042 |hdl=2027/mdp.39015086484659 |hdl-access=free}}</ref> The geometry about sodium is tetrahedral.<ref>{{cite book |author=Wells, A. F. |year=1984 |title=Structural Inorganic Chemistry |location=Oxford |publisher=Clarendon Press |isbn=0-19-855370-6}}</ref> In ammonia, {{chem2|NaNH2}} forms conductive solutions, consistent with the presence of {{chem2|[Na(NH3)6]+}} and {{chem2|NH2−}} ions.


==Uses==
==Uses==
Sodium amide is mainly used as a strong [[base (chemistry)|base]] in organic chemistry, often in liquid ammonia solution. It is the reagent of choice for the drying of [[ammonia]] (liquid or gaseous){{citation needed|date=September 2014}}. One of the main advantages to the use of sodium amide is that it mainly functions as a [[nucleophile]]. In the industrial production of [[Indigo dye|indigo]], sodium amide is a component of the highly basic mixture that induces cyclisation of [[N-Phenylglycine|''N''-phenylglycine]]. The reaction produces ammonia, which is recycled typically.<ref>L. Lange, W. Treibel "Sodium Amide" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. {{DOI|10.1002/14356007.a24_267}}</ref>
Sodium amide is mainly used as a [[strong base]] in organic chemistry, often [[suspension (chem)|suspended]] (it is insoluble<ref>{{cite book|url=https://archive.org/details/cftri.2662nonaqueoussolven0000ludw/page/79/|page=79|title=Non-aqueous solvents|first1=Ludwig&nbsp;F.|last1=Audrieth|first2=Jacob|last2=Kleinberg|publisher=John Wiley & Sons|location=New York|year=1953|lccn=52-12057}}</ref>) in liquid ammonia solution. It is the reagent of choice for the drying of [[ammonia]] (liquid or gaseous).{{citation needed|date=September 2014}}<!--seems unlikely and not supported by Ullmann's: also for [[hydrazine]], and [[sodium cyanide]].<ref>{{Merck12th}}</ref>--> One of the main advantages to the use of sodium amide is its relatively low [[nucleophile|nucleophilicity]]. In the industrial production of [[indigo dye|indigo]], sodium amide is a component of the highly basic mixture that induces cyclisation of [[N-Phenylglycine|''N''-phenylglycine]]. The reaction produces ammonia, which is recycled typically.<ref>L. Lange, W. Treibel "Sodium Amide" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. {{doi|10.1002/14356007.a24_267}}</ref>
[[Image:Indigo Synthesis V.1.svg|thumb|centre|400px|Pfleger's synthesis of [[indigo dye]].]]
[[File:Indigo Synthesis V.1.svg|thumb|centre|400px|Pfleger's synthesis of [[indigo dye]].]]

<!--seems unlikely and not supported by Ullmann's: also for [[hydrazine]], and [[sodium cyanide]].<ref>{{Merck12th}}</ref>-->


===Dehydrohalogenation===
===Dehydrohalogenation===
Sodium amide induces the loss of two equivalents of [[hydrogen bromide]] from a [[Vicinal (chemistry)|vicinal]] dibromoalkane to give a [[alkyne|carbon-carbon triple bond]], as in a preparation of [[phenylacetylene]].<ref>{{ OrgSynth | author = Campbell, K. N.; Campbell, B. K. | title = Phenylacetylene | year = 1950 | volume = 30 | pages = 72 | collvol = 4 | collvolpages = 763 | prep = cv4p0763 }}</ref>
Sodium amide induces the loss of two equivalents of [[hydrogen bromide]] from a [[vicinal (chemistry)|vicinal]] dibromoalkane to give a [[alkyne|carbon–carbon triple bond]], as in a preparation of [[phenylacetylene]].<ref>{{OrgSynth |author=Campbell, K. N.; Campbell, B. K. |title=Phenylacetylene |year=1950 |volume=30 |pages=72 |collvol=4 |collvolpages=763 |prep=cv4p0763}}</ref>
Usually two equivalents of sodium amide yields the desired alkyne. Three equivalents are necessary in the preparation of a terminal alkynes because the terminal CH of the resulting alkyne protonates an equivalent amount of base.
Usually two equivalents of sodium amide yields the desired alkyne. Three equivalents are necessary in the preparation of a terminal alkynes because the terminal CH of the resulting alkyne protonates an equivalent amount of base.


[[Image:Phenylacetylene prepn.png|300px]]
[[File:Phenylacetylene prepn.png|300px]]


[[Hydrogen chloride]] and [[ethanol]] can also be eliminated in this way,<ref>{{ OrgSynth | author = Jones, E. R. H.; [[Geoffrey Eglinton|Eglinton, G.]]; Whiting, M. C.; Shaw, B. L. | title = Ethoxyacetylene | year = 1954 | volume = 34 | pages = 46 | collvol = 4 | collvolpages = 404 | prep = cv4p0404 }}<br />
[[Hydrogen chloride]] and [[ethanol]] can also be eliminated in this way,<ref>{{OrgSynth |author=Jones, E. R. H.; [[Geoffrey Eglinton|Eglinton, G.]]; Whiting, M. C.; Shaw, B. L. |title=Ethoxyacetylene |year=1954 |volume=34 |pages=46 |collvol=4 |collvolpages=404 |prep=cv4p0404}}<br>
{{ OrgSynth | author = Bou, A.; Pericàs, M. A.; Riera, A.; Serratosa, F. | title = Dialkoxyacetylenes: di-''tert''-butoxyethyne, a valuable synthetic intermediate | year = 1987 | volume = 65 | pages = 58 | collvol = 8 | collvolpages = 161 | prep = cv8p0161 }}<br />
{{OrgSynth |author=Bou, A.; Pericàs, M. A.; Riera, A.; Serratosa, F. |title=Dialkoxyacetylenes: di-''tert''-butoxyethyne, a valuable synthetic intermediate |year=1987 |volume=65 |pages=58 |collvol=8 |collvolpages=161 |prep=cv8p0161}}<br>
{{ OrgSynth | author = Magriotis, P. A.; Brown, J. T. | title = Phenylthioacetylene | year = 1995 | volume = 72 | pages = 252 | collvol = 9 | collvolpages = 656 | prep = cv9p0656 }}<br />
{{OrgSynth |author=Magriotis, P. A.; Brown, J. T. |title=Phenylthioacetylene |year=1995 |volume=72 |pages=252 |collvol=9 |collvolpages=656 |prep=cv9p0656}}<br>
{{ OrgSynth | author = Ashworth, P. J.; Mansfield, G. H.; Whiting, M. C. | year = 1955 | title = 2-Butyn-1-ol | volume = 35 | pages = 20 | collvol = 4 | collvolpages = 128 | prep = cv4p0128 }}</ref> as in the preparation of 1-ethoxy-1-butyne.<ref>{{ OrgSynth | author = Newman, M. S.; Stalick, W. M. | title = 1-Ethoxy-1-butyne | year = 1977 | volume = 57 | pages = 65 | collvol = 6 | collvolpages = 564 | prep = cv6p0564 }}</ref>
{{OrgSynth |author=Ashworth, P. J.; Mansfield, G. H.; Whiting, M. C. |year=1955 |title=2-Butyn-1-ol |volume=35 |pages=20 |collvol=4 |collvolpages=128 |prep=cv4p0128}}</ref> as in the preparation of 1-ethoxy-1-butyne.<ref>{{OrgSynth |author=Newman, M. S.; Stalick, W. M. |title=1-Ethoxy-1-butyne |year=1977 |volume=57 |pages=65 |collvol=6 |collvolpages=564 |prep=cv6p0564}}</ref>


[[Image:Ethoxybutyne prepn.png|500px]]
[[File:Ethoxybutyne prepn.png|500px]]


===Cyclization reactions===
===Cyclization reactions===
Where there is no β-hydrogen to be eliminated, cyclic compounds may be formed, as in the preparation of [[methylenecyclopropane]] below.<ref>{{ OrgSynth | author = Salaun, J. R.; Champion, J.; Conia, J. M. | title = Cyclobutanone from methylenecyclopropane ''via'' oxaspiropentane | year = 1977 | volume = 57 | pages = 36 | collvol = 6 | collvolpages = 320 | prep = cv6p0320 }}</ref>
Where there is no β-hydrogen to be eliminated, cyclic compounds may be formed, as in the preparation of [[methylenecyclopropane]] below.<ref>{{OrgSynth |author=Salaun, J. R.; Champion, J.; Conia, J. M. |title=Cyclobutanone from methylenecyclopropane ''via'' oxaspiropentane |year=1977 |volume=57 |pages=36 |collvol=6 |collvolpages=320 |prep=cv6p0320}}</ref>


[[Image:Methylenecyclopropane prepn.png|400px]]
[[File:Methylenecyclopropane prepn.png|400px]]


[[Cyclopropene]]s,<ref>{{ OrgSynth | author = Nakamura, M.; Wang, X. Q.; Isaka, M.; Yamago, S.; Nakamura, E. | title = Synthesis and (3+2)-cycloaddition of a 2,2-dialkoxy-1-methylenecyclopropane: 6,6-dimethyl-1-methylene-4,8-dioxaspiro(2.5)octane and ''cis''-5-(5,5-dimethyl-1,3-dioxan-2-ylidene)hexahydro-1(2''H'')-pentalen-2-one | year = 2003 | volume = 80 | pages = 144 | prep = v80p0144 }}</ref> [[aziridines]]<ref>{{ OrgSynth | author = Bottini, A. T.; Olsen, R. E. | title = ''N''-Ethylallenimine | year = 1964 | volume = 44 | pages = 53 | collvol = 5 | collvolpages = 541 | prep = cv5p0541 }}</ref>
[[Cyclopropene]]s,<ref>{{OrgSynth |author=Nakamura, M.; Wang, X. Q.; Isaka, M.; Yamago, S.; Nakamura, E. |title=Synthesis and (3+2)-cycloaddition of a 2,2-dialkoxy-1-methylenecyclopropane: 6,6-dimethyl-1-methylene-4,8-dioxaspiro(2.5)octane and ''cis''-5-(5,5-dimethyl-1,3-dioxan-2-ylidene)hexahydro-1(2''H'')-pentalen-2-one |year=2003 |volume=80 |pages=144 |prep=v80p0144}}</ref> [[aziridines]]<ref>{{OrgSynth |author=Bottini, A. T.; Olsen, R. E. |title=''N''-Ethylallenimine |year=1964 |volume=44 |pages=53 |collvol=5 |collvolpages=541 |prep=cv5p0541}}</ref>
and [[cyclobutane]]s<ref>{{ OrgSynth | author = Skorcz, J. A.; Kaminski, F. E. | title = 1-Cyanobenzocyclobutene | year = 1968 | volume = 48 | pages = 55 | collvol = 5 | collvolpages = 263 | prep = cv5p0263 }}</ref> may be formed in a similar manner.
and [[cyclobutane]]s<ref>{{OrgSynth |author=Skorcz, J. A.; Kaminski, F. E. |title=1-Cyanobenzocyclobutene |year=1968 |volume=48 |pages=55 |collvol=5 |collvolpages=263 |prep=cv5p0263}}</ref> may be formed in a similar manner.


===Deprotonation of carbon and nitrogen acids===
===Deprotonation of carbon and nitrogen acids===
Carbon acids which can be [[Deprotonation|deprotonated]] by sodium amide in liquid ammonia include terminal [[alkyne]]s,<ref>{{ OrgSynth | author = Saunders, J. H. | title = 1-Ethynylcyclohexanol | year = 1949 | volume = 29 | pages = 47 | collvol = 3 | collvolpages = 416 | prep = cv3p0416 }}<br />
Carbon acids which can be [[deprotonation|deprotonated]] by sodium amide in liquid ammonia include terminal [[alkyne]]s,<ref>{{OrgSynth |author=Saunders, J. H. |title=1-Ethynylcyclohexanol |year=1949 |volume=29 |pages=47 |collvol=3 |collvolpages=416 |prep=cv3p0416}}<br>
{{ OrgSynth | author = Peterson, P. E.; Dunham, M. | title = (''Z'')-4-Chloro-4-hexenyl trifluoroacetate | year = 1977 | volume = 57 | pages = 26 | collvol = 6 | collvolpages = 273 | prep = cv6p0273 }}<br />
{{OrgSynth |author=Peterson, P. E.; Dunham, M. |title=(''Z'')-4-Chloro-4-hexenyl trifluoroacetate |year=1977 |volume=57 |pages=26 |collvol=6 |collvolpages=273 |prep=cv6p0273}}<br>
{{ OrgSynth | author = Kauer, J. C.; Brown, M. | title = Tetrolic acid | year = 1962 | volume = 42 | pages = 97 | collvol = 5 | collvolpages = 1043 | prep = cv5p1043 }}</ref>
{{OrgSynth |author=Kauer, J. C.; Brown, M. |title=Tetrolic acid |year=1962 |volume=42 |pages=97 |collvol=5 |collvolpages=1043 |prep=cv5p1043}}</ref>
methyl [[ketone]]s,<ref>{{ OrgSynth | author = Coffman, D. D. | title = Dimethylethynylcarbinol | year = 1940 | volume = 20 | pages = 40 | collvol = 3 | collvolpages = 320 | prep = cv3p0320 }}{{ OrgSynth | author = Hauser, C. R.; Adams, J. T.; Levine, R. | title = Diisovalerylmethane | year = 1948 | volume = 28 | pages = 44 | collvol = 3 | collvolpages = 291 | prep = cv3p0291 }}</ref>
methyl [[ketone]]s,<ref>{{OrgSynth |author=Coffman, D. D. |title=Dimethylethynylcarbinol |year=1940 |volume=20 |pages=40 |collvol=3 |collvolpages=320 |prep=cv3p0320}}{{OrgSynth |author=Hauser, C. R.; Adams, J. T.; Levine, R. |title=Diisovalerylmethane |year=1948 |volume=28 |pages=44 |collvol=3 |collvolpages=291 |prep=cv3p0291}}</ref>
[[cyclohexanone]],<ref>{{ OrgSynth | author = Vanderwerf, C. A.; Lemmerman, L. V. | title = 2-Allylcyclohexanone | year = 1948 | volume = 28 | pages = 8 | collvol = 3 | collvolpages = 44 | prep = cv3p0044 }}</ref> [[phenylacetic acid]] and its derivatives<ref>{{ OrgSynth | author = Hauser, C. R.; Dunnavant, W. R. | title = α,β-Diphenylpropionic acid | year = 1960 | volume = 40 | pages = 38 | collvol = 5 | collvolpages = 526 | prep = cv5p0526 }}<br />
[[cyclohexanone]],<ref>{{OrgSynth |author=Vanderwerf, C. A.; Lemmerman, L. V. |title=2-Allylcyclohexanone |year=1948 |volume=28 |pages=8 |collvol=3 |collvolpages=44 |prep=cv3p0044}}</ref> [[phenylacetic acid]] and its derivatives<ref>{{OrgSynth |author=Hauser, C. R.; Dunnavant, W. R. |title=α,β-Diphenylpropionic acid |year=1960 |volume=40 |pages=38 |collvol=5 |collvolpages=526 |prep=cv5p0526}}<br>
{{ OrgSynth | author = Kaiser, E. M.; Kenyon, W. G.; Hauser, C. R. | title = Ethyl 2,4-diphenylbutanoate | year = 1967 | volume = 47 | pages = 72 | collvol = 5 | collvolpages = 559 | prep = cv5p0559 }}<br />
{{OrgSynth |author=Kaiser, E. M.; Kenyon, W. G.; Hauser, C. R. |title=Ethyl 2,4-diphenylbutanoate |year=1967 |volume=47 |pages=72 |collvol=5 |collvolpages=559 |prep=cv5p0559}}<br>
{{ OrgSynth | author = Wawzonek, S.; Smolin, E. M. | title = α,β-Diphenylcinnamonitrile | year = 1951 | volume = 31 | pages = 52 | collvol = 4 | collvolpages = 387 | prep = cv4p0387 }}</ref>
{{OrgSynth |author=Wawzonek, S.; Smolin, E. M. |title=α,β-Diphenylcinnamonitrile |year=1951 |volume=31 |pages=52 |collvol=4 |collvolpages=387 |prep=cv4p0387}}</ref>
and [[diphenylmethane]].<ref>{{ OrgSynth | author = Murphy, W. S.; Hamrick, P. J.; Hauser, C. R. | title = 1,1-Diphenylpentane | year = 1968 | volume = 48 | pages = 80 | collvol = 5 | collvolpages = 523 | prep = cv5p0523 }}</ref> [[Acetylacetone]] loses two protons to form a [[Anion|dianion]].<ref>{{ OrgSynth | author = Hampton, K. G.; Harris, T. M.; Hauser, C. R. | title = Phenylation of diphenyliodonium chloride: 1-phenyl-2,4-pentanedione | year = 1971 | volume = 51 | pages = 128 | collvol = 6 | collvolpages = 928 | prep = cv6p0928 }}<br />
and [[diphenylmethane]].<ref>{{OrgSynth |author=Murphy, W. S.; Hamrick, P. J.; Hauser, C. R. |title=1,1-Diphenylpentane |year=1968 |volume=48 |pages=80 |collvol=5 |collvolpages=523 |prep=cv5p0523}}</ref> [[Acetylacetone]] loses two protons to form a [[anion|dianion]].<ref>{{OrgSynth |author=Hampton, K. G.; Harris, T. M.; Hauser, C. R. |title=Phenylation of diphenyliodonium chloride: 1-phenyl-2,4-pentanedione |year=1971 |volume=51 |pages=128 |collvol=6 |collvolpages=928 |prep=cv6p0928}}<br>
{{ OrgSynth | author = Hampton, K. G.; Harris, T. M.; Hauser, C. R. | title = 2,4-Nonanedione | year = 1967 | volume = 47 | pages = 92 | collvol = 5 | collvolpages = 848 | prep = cv5p0848 }}</ref> Sodium amide will also deprotonate [[indole]]<ref>{{ OrgSynth | author = Potts, K. T.; Saxton, J. E. | title = 1-Methylindole | year = 1960 | volume = 40 | pages = 68 | collvol = 5 | collvolpages = 769 | prep = cv5p0769 }}</ref> and [[piperidine]].<ref>{{ OrgSynth | author = Bunnett, J. F.; Brotherton, T. K.; Williamson, S. M. | title = ''N''-β-Naphthylpiperidine | year = 1960 | volume = 40 | pages = 74 | collvol = 5 | collvolpages = 816 | prep = cv5p0816 }}</ref>
{{OrgSynth |author=Hampton, K. G.; Harris, T. M.; Hauser, C. R. |title=2,4-Nonanedione |year=1967 |volume=47 |pages=92 |collvol=5 |collvolpages=848 |prep=cv5p0848}}</ref> Sodium amide will also deprotonate [[indole]]<ref>{{OrgSynth |author=Potts, K. T.; Saxton, J. E. |title=1-Methylindole |year=1960 |volume=40 |pages=68 |collvol=5 |collvolpages=769 |prep=cv5p0769}}</ref> and [[piperidine]].<ref>{{OrgSynth |author=Bunnett, J. F.; Brotherton, T. K.; Williamson, S. M. |title=''N''-β-Naphthylpiperidine |year=1960 |volume=40 |pages=74 |collvol=5 |collvolpages=816 |prep=cv5p0816}}</ref>


===Related non-nucleophilic bases===
===Related non-nucleophilic bases===
It is however poorly soluble in solvents other than ammonia. Its use has been superseded by the related reagents [[sodium hydride]], [[sodium bis(trimethylsilyl)amide]] (NaHMDS), and [[lithium diisopropylamide]] (LDA).
It is however poorly soluble in solvents other than ammonia. Its use has been superseded by the related reagents [[sodium hydride]], [[sodium bis(trimethylsilyl)amide]] (NaHMDS), and [[lithium diisopropylamide]] (LDA).


===Other reactions===
===Other reactions===
*Rearrangement with orthodeprotonation<ref>{{ OrgSynth | author = Brazen, W. R.; Hauser, C. R. | title = 2-Methylbenzyldimethylamine | year = 1954 | volume = 34 | pages = 61 | collvol = 4 | collvolpages = 585 | prep = cv4p0585 }}</ref>
*Rearrangement with orthodeprotonation<ref>{{OrgSynth |author=Brazen, W. R.; Hauser, C. R. |title=2-Methylbenzyldimethylamine |year=1954 |volume=34 |pages=61 |collvol=4 |collvolpages=585 |prep=cv4p0585}}</ref>
*Oxirane synthesis<ref>{{ OrgSynth | author = Allen, C. F. H.; VanAllan, J. | title = Phenylmethylglycidic ester | year = 1944 | volume = 24 | pages = 82 | collvol = 3 | collvolpages = 727 | prep = cv3p0727 }}</ref>
*Oxirane synthesis<ref>{{OrgSynth |author=Allen, C. F. H.; VanAllan, J. |title=Phenylmethylglycidic ester |year=1944 |volume=24 |pages=82 |collvol=3 |collvolpages=727 |prep=cv3p0727}}</ref>
*Indole synthesis<ref>{{ OrgSynth | author = Allen, C. F. H.; VanAllan, J. | title = 2-Methylindole | year = 1942 | volume = 22 | pages = 94 | collvol = 3 | collvolpages = 597 | prep = cv3p0597 }}</ref>
*Indole synthesis<ref>{{OrgSynth |author=Allen, C. F. H.; VanAllan, J. |title=2-Methylindole |year=1942 |volume=22 |pages=94 |collvol=3 |collvolpages=597 |prep=cv3p0597}}</ref>
*[[Chichibabin reaction]]
*[[Chichibabin reaction]]


==Safety==
==Safety==
Sodium amide reacts violently with water to produce [[ammonia]] and [[sodium hydroxide]] and will burn in air to give [[sodium oxide|oxides of sodium]] and [[nitrogen dioxide|nitrogen dioxide]].
Sodium amide decomposes violently on contact with water, producing [[ammonia]] and [[sodium hydroxide]]:
:{{chem2|NaNH2 + H2O → NH3 + NaOH}}


When burned in oxygen, it will give [[sodium oxide|oxides of sodium]] (which react with the produced water, giving sodium hydroxide) along with nitrogen oxides:
:NaNH<sub>2</sub> + H<sub>2</sub>O → NH<sub>3</sub> + NaOH
:{{chem2|4 NaNH2 + 5 O2 → 4 NaOH + 4 NO + 2 H2O}}
:{{chem2|4 NaNH2 + 7 O2 → 4 NaOH + 4 NO2 + 2 H2O}}


In the presence of limited quantities of air and moisture, such as in a poorly closed container, explosive mixtures of peroxides may form.<ref name="Clark2001">{{cite journal |last1=Clark |first1=Donald E |title=Peroxides and peroxide-forming compounds |journal=Chemical Health and Safety |volume=8 |issue=5 |year=2001 |pages=12–22 |issn=1074-9098 |doi=10.1016/S1074-9098(01)00247-7}}</ref> This is accompanied by a yellowing or browning of the solid. As such, sodium amide is to be stored in a tightly closed container, under an atmosphere of an inert gas. Sodium amide samples which are yellow or brown in color represent explosion risks.<ref>{{cite web |title=Sodium amide SOP |url=https://ehs.princeton.edu/laboratory-research/chemical-safety/chemical-specific-protocols/sodium-amide |publisher=Princeton |ref=SOP sodium amide Princeton}}</ref>
:4 NaNH<sub>2</sub> + 7 O<sub>2</sub> → 2 Na<sub>2</sub>O + 4 NO<sub>2</sub> + 4 H<sub>2</sub>O

In the presence of limited quantities of air and moisture, such as in a poorly closed container, explosive mixtures of peroxides may form.<ref name="Clark2001">{{cite journal|last1=Clark|first1=Donald E|title=Peroxides and peroxide-forming compounds|journal=Chemical Health and Safety|volume=8|issue=5|year=2001|pages=12–22|issn=10749098|doi=10.1016/S1074-9098(01)00247-7}}</ref> This is accompanied by a yellowing or browning of the solid. As such, sodium amide is to be stored in a tightly closed container, under an atmosphere of an inert gas. Sodium amide samples which are yellow or brown in color represent explosion risks.<ref>{{cite web|title=Sodium amide SOP|url=https://ehs.princeton.edu/laboratory-research/chemical-safety/chemical-specific-protocols/sodium-amide|publisher=Princeton|ref=SOP sodium amide Princeton}}</ref>


==References==
==References==
{{reflist|2}}
{{Reflist}}


{{Sodium compounds}}
{{Sodium compounds}}
{{Authority control}}


[[Category:Sodium compounds]]
[[Category:Metal amides]]
[[Category:Metal amides]]
[[Category:Reagents for organic chemistry]]
[[Category:Sodium compounds]]

Latest revision as of 18:17, 23 June 2024

Sodium amide
Ball and stick, unit cell model of sodium amide
Names
IUPAC name
Sodium amide, sodium azanide[1]
Other names
Sodamide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.029.064 Edit this at Wikidata
EC Number
  • 231-971-0
UNII
UN number 1390
  • InChI=1S/H2N.Na/h1H2;/q-1;+1 ☒N
    Key: ODZPKZBBUMBTMG-UHFFFAOYSA-N ☒N
  • [Na]N
  • [NH2-].[Na+]
Properties
NaNH2
Molar mass 39.013 g·mol−1
Appearance Colourless crystals
Odor Ammonia-like
Density 1.39 g/cm3
Melting point 210 °C (410 °F; 483 K)
Boiling point 400 °C (752 °F; 673 K)
Reacts
Solubility 40 mg/L (liquid ammonia), reacts with ethanol
Acidity (pKa) 38 (conjugate acid)[2]
Structure
orthorhombic
Thermochemistry
66.15 J/(mol·K)
76.9 J/(mol·K)
-118.8 kJ/mol
-59 kJ/mol
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
3
2
3
Flash point 4.44 °C (39.99 °F; 277.59 K)
450 °C (842 °F; 723 K)
Related compounds
Other anions
Sodium bis(trimethylsilyl)amide
Other cations
Lithium amide
Potassium amide
Related compounds
Ammonia
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Sodium amide, commonly called sodamide (systematic name sodium azanide), is the inorganic compound with the formula NaNH2. It is a salt composed of the sodium cation and the azanide anion. This solid, which is dangerously reactive toward water, is white, but commercial samples are typically gray due to the presence of small quantities of metallic iron from the manufacturing process. Such impurities do not usually affect the utility of the reagent.[citation needed] NaNH2 conducts electricity in the fused state, its conductance being similar to that of NaOH in a similar state. NaNH2 has been widely employed as a strong base in organic synthesis.

Preparation and structure

[edit]

Sodium amide can be prepared by the reaction of sodium with ammonia gas,[3] but it is usually prepared by the reaction in liquid ammonia using iron(III) nitrate as a catalyst. The reaction is fastest at the boiling point of the ammonia, c. −33 °C. An electride, [Na(NH3)6]+e, is formed as a reaction intermediate.[4]

2 Na + 2 NH3 → 2 NaNH2 + H2

NaNH2 is a salt-like material and as such, crystallizes as an infinite polymer.[5] The geometry about sodium is tetrahedral.[6] In ammonia, NaNH2 forms conductive solutions, consistent with the presence of [Na(NH3)6]+ and NH2 ions.

Uses

[edit]

Sodium amide is mainly used as a strong base in organic chemistry, often suspended (it is insoluble[7]) in liquid ammonia solution. It is the reagent of choice for the drying of ammonia (liquid or gaseous).[citation needed] One of the main advantages to the use of sodium amide is its relatively low nucleophilicity. In the industrial production of indigo, sodium amide is a component of the highly basic mixture that induces cyclisation of N-phenylglycine. The reaction produces ammonia, which is recycled typically.[8]

Pfleger's synthesis of indigo dye.

Dehydrohalogenation

[edit]

Sodium amide induces the loss of two equivalents of hydrogen bromide from a vicinal dibromoalkane to give a carbon–carbon triple bond, as in a preparation of phenylacetylene.[9] Usually two equivalents of sodium amide yields the desired alkyne. Three equivalents are necessary in the preparation of a terminal alkynes because the terminal CH of the resulting alkyne protonates an equivalent amount of base.

Hydrogen chloride and ethanol can also be eliminated in this way,[10] as in the preparation of 1-ethoxy-1-butyne.[11]

Cyclization reactions

[edit]

Where there is no β-hydrogen to be eliminated, cyclic compounds may be formed, as in the preparation of methylenecyclopropane below.[12]

Cyclopropenes,[13] aziridines[14] and cyclobutanes[15] may be formed in a similar manner.

Deprotonation of carbon and nitrogen acids

[edit]

Carbon acids which can be deprotonated by sodium amide in liquid ammonia include terminal alkynes,[16] methyl ketones,[17] cyclohexanone,[18] phenylacetic acid and its derivatives[19] and diphenylmethane.[20] Acetylacetone loses two protons to form a dianion.[21] Sodium amide will also deprotonate indole[22] and piperidine.[23]

[edit]

It is however poorly soluble in solvents other than ammonia. Its use has been superseded by the related reagents sodium hydride, sodium bis(trimethylsilyl)amide (NaHMDS), and lithium diisopropylamide (LDA).

Other reactions

[edit]

Safety

[edit]

Sodium amide decomposes violently on contact with water, producing ammonia and sodium hydroxide:

NaNH2 + H2O → NH3 + NaOH

When burned in oxygen, it will give oxides of sodium (which react with the produced water, giving sodium hydroxide) along with nitrogen oxides:

4 NaNH2 + 5 O2 → 4 NaOH + 4 NO + 2 H2O
4 NaNH2 + 7 O2 → 4 NaOH + 4 NO2 + 2 H2O

In the presence of limited quantities of air and moisture, such as in a poorly closed container, explosive mixtures of peroxides may form.[27] This is accompanied by a yellowing or browning of the solid. As such, sodium amide is to be stored in a tightly closed container, under an atmosphere of an inert gas. Sodium amide samples which are yellow or brown in color represent explosion risks.[28]

References

[edit]
  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "amides". doi:10.1351/goldbook.A00266
  2. ^ Buncel, E.; Menon, B. (1977). "Carbanion mechanisms: VII. Metallation of hydrocarbon acids by potassium amide and potassium methylamide in tetrahydrofuran and the relative hydride acidities". Journal of Organometallic Chemistry. 141 (1): 1–7. doi:10.1016/S0022-328X(00)90661-2.
  3. ^ Bergstrom, F. W. (1955). "Sodium amide". Organic Syntheses; Collected Volumes, vol. 3, p. 778.
  4. ^ Greenlee, K. W.; Henne, A. L. (1946). "Sodium Amide". Inorganic Syntheses. Vol. 2. pp. 128–135. doi:10.1002/9780470132333.ch38. ISBN 9780470132333.
  5. ^ Zalkin, A.; Templeton, D. H. (1956). "The Crystal Structure Of Sodium Amide". Journal of Physical Chemistry. 60 (6): 821–823. doi:10.1021/j150540a042. hdl:2027/mdp.39015086484659.
  6. ^ Wells, A. F. (1984). Structural Inorganic Chemistry. Oxford: Clarendon Press. ISBN 0-19-855370-6.
  7. ^ Audrieth, Ludwig F.; Kleinberg, Jacob (1953). Non-aqueous solvents. New York: John Wiley & Sons. p. 79. LCCN 52-12057.
  8. ^ L. Lange, W. Treibel "Sodium Amide" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a24_267
  9. ^ Campbell, K. N.; Campbell, B. K. (1950). "Phenylacetylene". Organic Syntheses. 30: 72{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 4, p. 763.
  10. ^ Jones, E. R. H.; Eglinton, G.; Whiting, M. C.; Shaw, B. L. (1954). "Ethoxyacetylene". Organic Syntheses. 34: 46{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 4, p. 404.
    Bou, A.; Pericàs, M. A.; Riera, A.; Serratosa, F. (1987). "Dialkoxyacetylenes: di-tert-butoxyethyne, a valuable synthetic intermediate". Organic Syntheses. 65: 58{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 8, p. 161.
    Magriotis, P. A.; Brown, J. T. (1995). "Phenylthioacetylene". Organic Syntheses. 72: 252{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 9, p. 656.
    Ashworth, P. J.; Mansfield, G. H.; Whiting, M. C. (1955). "2-Butyn-1-ol". Organic Syntheses. 35: 20{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 4, p. 128.
  11. ^ Newman, M. S.; Stalick, W. M. (1977). "1-Ethoxy-1-butyne". Organic Syntheses. 57: 65{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 6, p. 564.
  12. ^ Salaun, J. R.; Champion, J.; Conia, J. M. (1977). "Cyclobutanone from methylenecyclopropane via oxaspiropentane". Organic Syntheses. 57: 36{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 6, p. 320.
  13. ^ Nakamura, M.; Wang, X. Q.; Isaka, M.; Yamago, S.; Nakamura, E. (2003). "Synthesis and (3+2)-cycloaddition of a 2,2-dialkoxy-1-methylenecyclopropane: 6,6-dimethyl-1-methylene-4,8-dioxaspiro(2.5)octane and cis-5-(5,5-dimethyl-1,3-dioxan-2-ylidene)hexahydro-1(2H)-pentalen-2-one". Organic Syntheses. 80: 144{{cite journal}}: CS1 maint: multiple names: authors list (link).
  14. ^ Bottini, A. T.; Olsen, R. E. (1964). "N-Ethylallenimine". Organic Syntheses. 44: 53{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 5, p. 541.
  15. ^ Skorcz, J. A.; Kaminski, F. E. (1968). "1-Cyanobenzocyclobutene". Organic Syntheses. 48: 55{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 5, p. 263.
  16. ^ Saunders, J. H. (1949). "1-Ethynylcyclohexanol". Organic Syntheses. 29: 47; Collected Volumes, vol. 3, p. 416.
    Peterson, P. E.; Dunham, M. (1977). "(Z)-4-Chloro-4-hexenyl trifluoroacetate". Organic Syntheses. 57: 26{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 6, p. 273.
    Kauer, J. C.; Brown, M. (1962). "Tetrolic acid". Organic Syntheses. 42: 97{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 5, p. 1043.
  17. ^ Coffman, D. D. (1940). "Dimethylethynylcarbinol". Organic Syntheses. 20: 40; Collected Volumes, vol. 3, p. 320.Hauser, C. R.; Adams, J. T.; Levine, R. (1948). "Diisovalerylmethane". Organic Syntheses. 28: 44{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 3, p. 291.
  18. ^ Vanderwerf, C. A.; Lemmerman, L. V. (1948). "2-Allylcyclohexanone". Organic Syntheses. 28: 8{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 3, p. 44.
  19. ^ Hauser, C. R.; Dunnavant, W. R. (1960). "α,β-Diphenylpropionic acid". Organic Syntheses. 40: 38{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 5, p. 526.
    Kaiser, E. M.; Kenyon, W. G.; Hauser, C. R. (1967). "Ethyl 2,4-diphenylbutanoate". Organic Syntheses. 47: 72{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 5, p. 559.
    Wawzonek, S.; Smolin, E. M. (1951). "α,β-Diphenylcinnamonitrile". Organic Syntheses. 31: 52{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 4, p. 387.
  20. ^ Murphy, W. S.; Hamrick, P. J.; Hauser, C. R. (1968). "1,1-Diphenylpentane". Organic Syntheses. 48: 80{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 5, p. 523.
  21. ^ Hampton, K. G.; Harris, T. M.; Hauser, C. R. (1971). "Phenylation of diphenyliodonium chloride: 1-phenyl-2,4-pentanedione". Organic Syntheses. 51: 128{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 6, p. 928.
    Hampton, K. G.; Harris, T. M.; Hauser, C. R. (1967). "2,4-Nonanedione". Organic Syntheses. 47: 92{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 5, p. 848.
  22. ^ Potts, K. T.; Saxton, J. E. (1960). "1-Methylindole". Organic Syntheses. 40: 68{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 5, p. 769.
  23. ^ Bunnett, J. F.; Brotherton, T. K.; Williamson, S. M. (1960). "N-β-Naphthylpiperidine". Organic Syntheses. 40: 74{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 5, p. 816.
  24. ^ Brazen, W. R.; Hauser, C. R. (1954). "2-Methylbenzyldimethylamine". Organic Syntheses. 34: 61{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 4, p. 585.
  25. ^ Allen, C. F. H.; VanAllan, J. (1944). "Phenylmethylglycidic ester". Organic Syntheses. 24: 82{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 3, p. 727.
  26. ^ Allen, C. F. H.; VanAllan, J. (1942). "2-Methylindole". Organic Syntheses. 22: 94{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 3, p. 597.
  27. ^ Clark, Donald E (2001). "Peroxides and peroxide-forming compounds". Chemical Health and Safety. 8 (5): 12–22. doi:10.1016/S1074-9098(01)00247-7. ISSN 1074-9098.
  28. ^ "Sodium amide SOP". Princeton.