Jump to content

Presentation of a group: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
about tag
 
(42 intermediate revisions by 25 users not shown)
Line 1: Line 1:
{{Short description|Specification of a mathematical group by generators and relations}}
{{hatnote|"Relator" redirects here. For other uses, see [[Relator (disambiguation)]]}}
{{distinguish|Group representation}}
{{About|specifying generators and relations of a group|describing a module over a ring|free presentation}}
{{About|specifying generators and relations of a group|describing a module over a ring|free presentation}}
In [[mathematics]], a '''presentation''' is one method of specifying a [[group (mathematics)|group]]. A presentation of a group ''G'' comprises a set ''S'' of '''[[generating set of a group|generators]]'''—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of '''relations''' among those generators. We then say ''G'' has presentation
In [[mathematics]], a '''presentation''' is one method of specifying a [[group (mathematics)|group]]. A presentation of a group ''G'' comprises a set ''S'' of '''[[generating set of a group|generators]]'''—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of '''relations''' among those generators. We then say ''G'' has presentation
Line 5: Line 6:
:<math>\langle S \mid R\rangle.</math>
:<math>\langle S \mid R\rangle.</math>


Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is [[group isomorphism|isomorphic]] to the [[quotient group|quotient]] of a [[free group]] on ''S'' by the [[Conjugate closure|normal subgroup generated by]] the relations ''R''.
Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is [[group isomorphism|isomorphic]] to the [[quotient group|quotient]] of a [[free group]] on ''S'' by the [[Normal closure (group theory)|normal subgroup generated by]] the relations ''R''.


As a simple example, the [[cyclic group]] of order ''n'' has the presentation
As a simple example, the [[cyclic group]] of order ''n'' has the presentation
Line 19: Line 20:
Every group has a presentation, and in fact many different presentations; a presentation is often the most compact way of describing the structure of the group.
Every group has a presentation, and in fact many different presentations; a presentation is often the most compact way of describing the structure of the group.


A closely related but different concept is that of an [[absolute presentation of a group|absolute presentation]] of a group.
A closely related but different concept is that of an [[absolute presentation of a group]].


== Background ==
== Background ==
Line 32: Line 33:
For example, the [[dihedral group]] D<sub>8</sub> of order sixteen can be generated by a rotation, ''r'', of order 8; and a flip, ''f'', of order 2; and certainly any element of D<sub>8</sub> is a product of ''r''{{'}}s and ''f''{{'}}s.
For example, the [[dihedral group]] D<sub>8</sub> of order sixteen can be generated by a rotation, ''r'', of order 8; and a flip, ''f'', of order 2; and certainly any element of D<sub>8</sub> is a product of ''r''{{'}}s and ''f''{{'}}s.


However, we have, for example, {{nowrap|1=''rfr'' = ''f''}}, {{nowrap|1=''r''<sup>7</sup> = ''r''<sup>−1</sup>}}, etc., so such products are ''not unique'' in D<sub>8</sub>. Each such product equivalence can be expressed as an equality to the identity, such as
However, we have, for example, {{math|1=''rfr'' = ''f''<sup>−1</sup>}}, {{math|1=''r''<sup>7</sup> = ''r''<sup>−1</sup>}}, etc., so such products are ''not unique'' in D<sub>8</sub>. Each such product equivalence can be expressed as an equality to the identity, such as


:''rfrf'' = 1
:{{math|1=''rfrf'' = 1}},
:''r''<sup>8</sup> = 1
:{{math|1=''r''<sup>8</sup> = 1}}, or
:''f''<sup>2</sup> = 1.
:{{math|1=''f''{{px2}}<sup>2</sup> = 1}}.


Informally, we can consider these products on the left hand side as being elements of the free group {{nowrap|1=''F'' = <''r'', ''f''>}}, and can consider the subgroup ''R'' of ''F'' which is generated by these strings; each of which would also be equivalent to 1 when considered as products in D<sub>8</sub>.
Informally, we can consider these products on the left hand side as being elements of the free group {{math|1=''F'' = ''r'', ''f''}}, and let {{math|1=''R'' = ⟨''rfrf'', ''r''<sup>8</sup>, ''f''{{px2}}<sup>2</sup>⟩}}. That is, we let ''R'' be the subgroup generated by the strings ''rfrf'', ''r''<sup>8</sup>, ''f''{{px2}}<sup>2</sup>, each of which is also equivalent to 1 when considered as products in D<sub>8</sub>.


If we then let ''N'' be the subgroup of ''F'' generated by all conjugates ''x''<sup>−1</sup>''Rx'' of ''R'', then it is straightforward to show that every element of ''N'' is a finite product ''x''<sub>1</sub><sup>−1</sup>''r''<sub>1</sub>''x''<sub>1</sub> <math>\cdots</math> ''x<sub>m</sub>''<sup>−1</sup>''r<sub>m</sub>'' ''x<sub>m</sub>'' of members of such conjugates. It follows that
If we then let ''N'' be the subgroup of ''F'' generated by all conjugates ''x''<sup>−1</sup>''Rx'' of ''R'', then it follows by definition that every element of ''N'' is a finite product ''x''<sub>1</sub><sup>−1</sup>''r''<sub>1</sub>''x''<sub>1</sub> ... ''x<sub>m</sub>''<sup>−1</sup>''r<sub>m</sub>'' ''x<sub>m</sub>'' of members of such conjugates. It follows that each element of ''N'', when considered as a product in D<sub>8</sub>, will also evaluate to 1; and thus that ''N'' is a normal subgroup of ''F''. Thus D<sub>8</sub> is isomorphic to the [[quotient group]] {{math|1=''F''/''N''}}. We then say that D<sub>8</sub> has presentation
''N'' is a normal subgroup of ''F''; and that each element of ''N'', when considered as a product in D<sub>8</sub>, will also evaluate to 1. Thus D<sub>8</sub> is isomorphic to the [[quotient group]] {{nowrap|1=''F''/''N''}}. We then say that D<sub>8</sub> has presentation


:<math>\langle r, f \mid r^8 = 1, f^2 = 1, (rf)^2 = 1\rangle.</math>
:<math>\langle r, f \mid r^8 = 1, f^2 = 1, (rf)^2 = 1\rangle.</math>


Here the set of generators is {{nowrap|1=''S'' = {''r'', ''f'' }}}, and the set of relations is {{nowrap|1=''R'' = {''r'' <sup>8</sup> = 1, ''f'' <sup>2</sup> = 1, (''rf'')<sup>2</sup> = 1} }}. We often see ''R'' abbreviated, giving the presentation
Here the set of generators is {{math|1=''S'' = {''r'', ''f''&nbsp;}}}, and the set of relations is {{math|1=''R'' = {''r'' <sup>8</sup> = 1, ''f'' <sup>2</sup> = 1, (''rf'' )<sup>2</sup> = 1} }}. We often see ''R'' abbreviated, giving the presentation


:<math>\langle r, f \mid r^8 = f^2 = (rf)^2 = 1\rangle.</math>
:<math>\langle r, f \mid r^8 = f^2 = (rf)^2 = 1\rangle.</math>


An even shorter form drops the equality and identity signs, to list just the set of relators, which is {{nowrap|1= {''r'' <sup>8</sup>, ''f'' <sup>2</sup>, (''rf'' )<sup>2</sup>} }}. Doing this gives the presentation
An even shorter form drops the equality and identity signs, to list just the set of relators, which is {{math|1= {''r'' <sup>8</sup>, ''f'' <sup>2</sup>, (''rf'' )<sup>2</sup>} }}. Doing this gives the presentation


:<math>\langle r, f \mid r^8, f^2, (rf)^2 \rangle.</math>
:<math>\langle r, f \mid r^8, f^2, (rf)^2 \rangle.</math>
Line 57: Line 57:
== Notation ==
== Notation ==


Although the notation {{math|{{braket|bra-ket|''S''|''R''}}}} used in this article for a presentation is now the most common, earlier writers used different variations on the same format. Such notations include:
Although the notation {{math|{{braket|bra-ket|''S'' | ''R''}}}} used in this article for a presentation is now the most common, earlier writers used different variations on the same format. Such notations include the following:{{cn|date=August 2020}}
*{{math|{{braket|bra-ket|''S''|''R''}}}}
*{{math|{{braket|bra-ket|''S'' | ''R''}}}}
*{{math|(''S''{{!}}''R'')}}
*{{math|(''S'' {{!}} ''R'')}}
*{{math|{''S'';''R''}}}
*{{math|{''S''; ''R''}}}
*{{math|{{angbr|''S'';''R''}}}}
*{{math|{{angbr|''S''; ''R''}}}}


== Definition ==
== Definition ==
{{redirect|Relator}}
Let ''S'' be a set and let ''F<sub>S</sub>'' be the [[free group]] on ''S''. Let ''R'' be a set of [[Word (group theory)|words]] on ''S'', so ''R'' naturally gives a subset of <math>F_S</math>. To form a group with presentation <math>\langle S \mid R\rangle</math>, the idea is to take <math>F_S</math> quotient by the smallest normal subgroup such that each element of ''R'' gets identified with the identity. Note that ''R'' might not be a [[subgroup]], let alone a [[normal subgroup]] of <math>F_S</math> , so we cannot take a quotient by ''R''. The solution is to take the [[Normal closure (group theory)|normal closure]] ''N'' of ''R'' in <math>F_S</math> . The group <math>\langle S \mid R\rangle</math> is then defined as the [[quotient group]]
Let ''S'' be a set and let ''F<sub>S</sub>'' be the [[free group]] on ''S''. Let ''R'' be a set of [[Word (group theory)|words]] on ''S'', so ''R'' naturally gives a subset of <math>F_S</math>. To form a group with presentation <math>\langle S \mid R\rangle</math>, take the quotient of <math>F_S</math> by the smallest normal subgroup that contains each element of ''R''. (This subgroup is called the [[Normal closure (group theory)|normal closure]] ''N'' of ''R'' in <math>F_S</math>.) The group <math>\langle S \mid R\rangle</math> is then defined as the [[quotient group]]
:<math>\langle S \mid R \rangle = F_S / N.</math>
:<math>\langle S \mid R \rangle = F_S / N.</math>
The elements of ''S'' are called the '''generators''' of <math>\langle S \mid R\rangle</math> and the elements of ''R'' are called the '''relators'''. A group ''G'' is said to have the presentation <math>\langle S \mid R\rangle</math> if ''G'' is isomorphic to <math>\langle S \mid R\rangle</math>.
The elements of ''S'' are called the '''generators''' of <math>\langle S \mid R\rangle</math> and the elements of ''R'' are called the '''relators'''. A group ''G'' is said to have the presentation <math>\langle S \mid R\rangle</math> if ''G'' is isomorphic to <math>\langle S \mid R\rangle</math>.<ref name = Peifer>{{cite journal|first = David|last = Peifer|title = An Introduction to Combinatorial Group Theory and the Word Problem|journal = Mathematics Magazine | volume = 70 | issue = 1 | pages = 3–10 | doi = 10.1080/0025570X.1997.11996491 | year = 1997}}</ref>


It is a common practice to write relators in the form <math>x = y</math> where ''x'' and ''y'' are words on ''S''. What this means is that <math>y^{-1}x\in R</math>. This has the intuitive meaning that the images of ''x'' and ''y'' are supposed to be equal in the quotient group. Thus e.g. ''r<sup>n</sup>'' in the list of relators is equivalent with <math>r^n=1</math>. Another common shorthand is to write <math>[x,y]</math> for a [[commutator]] <math>xyx^{-1}y^{-1}</math>.
It is a common practice to write relators in the form <math>x = y</math> where ''x'' and ''y'' are words on ''S''. What this means is that <math>y^{-1}x\in R</math>. This has the intuitive meaning that the images of ''x'' and ''y'' are supposed to be equal in the quotient group. Thus, for example, ''r<sup>n</sup>'' in the list of relators is equivalent with <math>r^n=1</math>.<ref name = Peifer />


For a finite group ''G'', the [[Cayley table|multiplication table]] provides a presentation. We take ''S'' to be the elements <math>g_i</math> of ''G'' and ''R'' to be all words of the form <math>g_ig_jg_k^{-1}</math>, where <math>g_ig_j=g_k\ </math> is an entry in the multiplication table. A presentation can then be thought of as a generalization of a multiplication table.
For a finite group ''G'', it is possible to build a presentation of ''G'' from the [[Cayley table|group multiplication table]], as follows. Take ''S'' to be the set elements <math>g_i</math> of ''G'' and ''R'' to be all words of the form <math>g_ig_jg_k^{-1}</math>, where <math>g_ig_j=g_k</math> is an entry in the multiplication table.

=== Alternate definition ===
The definition of group presentation may alternatively be recast in terms of [[equivalence class]]es of words on the alphabet <math>S \cup S^{-1}</math>. In this perspective, we declare two words to be equivalent if it is possible to get from one to the other by a sequence of moves, where each move consists of adding or removing a consecutive pair <math>x x^{-1}</math> or <math>x^{-1} x</math> for some {{mvar|x}} in {{mvar|S}}, or by adding or removing a consecutive copy of a relator. The group elements are the equivalence classes, and the group operation is concatenation.<ref name = Peifer />

This point of view is particularly common in the field of [[combinatorial group theory]].


== Finitely presented groups ==
== Finitely presented groups ==
Line 78: Line 84:
If ''S'' is indexed by a set ''I'' consisting of all the natural numbers '''N''' or a finite subset of them, then it is easy to set up a simple one to one coding (or [[Gödel numbering]]) {{nowrap|''f'' : ''F<sub>S</sub>'' → '''N'''}} from the free group on ''S'' to the natural numbers, such that we can find algorithms that, given ''f''(''w''), calculate ''w'', and vice versa. We can then call a subset ''U'' of ''F<sub>S</sub>'' [[recursive set|recursive]] (respectively [[recursively enumerable]]) if ''f''(''U'') is recursive (respectively recursively enumerable). If ''S'' is indexed as above and ''R'' recursively enumerable, then the presentation is a '''recursive presentation''' and the corresponding group is '''recursively presented'''. This usage may seem odd, but it is possible to prove that if a group has a presentation with ''R'' recursively enumerable then it has another one with ''R'' recursive.
If ''S'' is indexed by a set ''I'' consisting of all the natural numbers '''N''' or a finite subset of them, then it is easy to set up a simple one to one coding (or [[Gödel numbering]]) {{nowrap|''f'' : ''F<sub>S</sub>'' → '''N'''}} from the free group on ''S'' to the natural numbers, such that we can find algorithms that, given ''f''(''w''), calculate ''w'', and vice versa. We can then call a subset ''U'' of ''F<sub>S</sub>'' [[recursive set|recursive]] (respectively [[recursively enumerable]]) if ''f''(''U'') is recursive (respectively recursively enumerable). If ''S'' is indexed as above and ''R'' recursively enumerable, then the presentation is a '''recursive presentation''' and the corresponding group is '''recursively presented'''. This usage may seem odd, but it is possible to prove that if a group has a presentation with ''R'' recursively enumerable then it has another one with ''R'' recursive.


Every finitely presented group is recursively presented, but there are recursively presented groups that cannot be finitely presented. However a theorem of [[Graham Higman]] states that a finitely generated group has a recursive presentation if and only if it can be embedded in a finitely presented group. From this we can deduce that there are (up to isomorphism) only [[countably]] many finitely generated recursively presented groups. [[Bernhard Neumann]] has shown that there are [[uncountably]] many non-isomorphic two generator groups. Therefore, there are finitely generated groups that cannot be recursively presented.
Every finitely presented group is recursively presented, but there are recursively presented groups that cannot be finitely presented. However a theorem of [[Graham Higman]] states that a finitely generated group has a recursive presentation if and only if it can be embedded in a finitely presented group.<ref>{{Cite journal |date=1961-08-08 |title=Subgroups of finitely presented groups |url=https://royalsocietypublishing.org/doi/10.1098/rspa.1961.0132 |journal=Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences |language=en |volume=262 |issue=1311 |pages=455–475 |doi=10.1098/rspa.1961.0132 |bibcode=1961RSPSA.262..455H |s2cid=120100270 |issn=0080-4630 |last1=Higman |first1=G. }}</ref> From this we can deduce that there are (up to isomorphism) only [[countably]] many finitely generated recursively presented groups. [[Bernhard Neumann]] has shown that there are [[uncountably]] many non-isomorphic two generator groups. Therefore, there are finitely generated groups that cannot be recursively presented.


== Examples ==
== History ==
One of the earliest presentations of a group by generators and relations was given by the Irish mathematician [[William Rowan Hamilton]] in 1856, in his [[icosian calculus]] – a presentation of the [[icosahedral group]].<ref>{{Cite journal |title=Memorandum respecting a new System of Roots of Unity |author=Sir William Rowan Hamilton |author-link=William Rowan Hamilton |url=http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Icosian/NewSys.pdf |archive-url=https://web.archive.org/web/20030626113045/http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Icosian/NewSys.pdf |archive-date=2003-06-26 |url-status=live |journal=[[Philosophical Magazine]] |volume=12 |year=1856 |pages=446 }}</ref>
The first systematic study was given by [[Walther von Dyck]], student of [[Felix Klein]], in the early 1880s, laying the foundations for [[combinatorial group theory]].<ref name="stillwell374">{{Cite book | publisher = Springer | isbn = 978-0-387-95336-6 | last = Stillwell | first = John | title = Mathematics and its history | date = 2002 | page = [https://books.google.com/books?id=WNjRrqTm62QC&pg=PA374 374] }}</ref>


=== History ===
== Examples ==
One of the earliest presentations of a group by generators and relations was given by the Irish mathematician [[William Rowan Hamilton]] in 1856, in his [[icosian calculus]] – a presentation of the [[icosahedral group]].<ref>{{Cite journal |title=Memorandum respecting a new System of Roots of Unity |author=Sir William Rowan Hamilton |author-link=William Rowan Hamilton |url=http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Icosian/NewSys.pdf |journal=[[Philosophical Magazine]] |volume=12 |year=1856 |pages=446 }}</ref>

The first systematic study was given by [[Walther von Dyck]], student of [[Felix Klein]], in the early 1880s, laying the foundations for [[combinatorial group theory]].<ref name="stillwell374">{{Cite journal | publisher = Springer | isbn = 978-0-387-95336-6 | last = Stillwell | first = John | title = Mathematics and its history | date = 2002 | page = [https://books.google.com/books?id=WNjRrqTm62QC&pg=PA374 374] | postscript = <!--None--> }}</ref>

=== Common examples ===
The following table lists some examples of presentations for commonly studied groups. Note that in each case there are many other presentations that are possible. The presentation listed is not necessarily the most efficient one possible.
The following table lists some examples of presentations for commonly studied groups. Note that in each case there are many other presentations that are possible. The presentation listed is not necessarily the most efficient one possible.
{| border=1 class="wikitable"
{| border=1 class="wikitable"
Line 109: Line 112:
| Dic<sub>''n''</sub>, the [[dicyclic group]]
| Dic<sub>''n''</sub>, the [[dicyclic group]]
| <math>\langle r,f \mid r^{2n}, r^n=f^2, frf^{-1}=r^{-1} \rangle</math>
| <math>\langle r,f \mid r^{2n}, r^n=f^2, frf^{-1}=r^{-1} \rangle</math>
| The [[quaternion group]] is a special case when ''n'' = 2
| The [[quaternion group]] Q<sub>8</sub> is a special case when ''n'' = 2
|-
|-
| '''Z''' × '''Z'''
| '''Z''' × '''Z'''
Line 132: Line 135:
*<math>{(\sigma_i\sigma_{i+1}})^3=1\ </math>
*<math>{(\sigma_i\sigma_{i+1}})^3=1\ </math>
using <math>\sigma_i^2=1 </math>.
using <math>\sigma_i^2=1 </math>.
| Here ''σ''<sub>''i''</sub> is the permutation that swaps the ''i''th element with the ''i''+1 one. The product ''σ''<sub>''i''</sub>''σ''<sub>''i''+1</sub> is a 3-cycle on the set {''i'', ''i''+1, ''i''+2}.
| Here ''σ''<sub>''i''</sub> is the permutation that swaps the ''i''th element with the ''i''+1st one. The product ''σ''<sub>''i''</sub>''σ''<sub>''i''+1</sub> is a 3-cycle on the set {''i'', ''i''+1, ''i''+2}.
|-
|-
| B<sub>''n''</sub>, the [[braid group]]s
| B<sub>''n''</sub>, the [[braid group]]s
Line 140: Line 143:
*<math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\ </math>
*<math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\ </math>
| Note the similarity with the symmetric group; the only difference is the removal of the relation <math>\sigma_i^2 = 1</math>.
| Note the similarity with the symmetric group; the only difference is the removal of the relation <math>\sigma_i^2 = 1</math>.
|-
| {{nowrap|V<sub>4</sub> ≅ D<sub>2</sub>}}, the [[Klein 4 group]]
| <math>\langle s,t \mid s^2, t^2, (st)^2 \rangle</math>
|
|-
|-
| {{nowrap|T ≅ A<sub>4</sub>}}, the [[tetrahedral group]]
| {{nowrap|T ≅ A<sub>4</sub>}}, the [[tetrahedral group]]
Line 154: Line 161:
|-
|-
| Q<sub>8</sub>, the [[quaternion group]]
| Q<sub>8</sub>, the [[quaternion group]]
| <math>\langle i,j \mid jij = i, iji = j \rangle\,</math>
| <math>\langle i,j \mid i^4, jij = i, iji = j \rangle\,</math>
| For an alternative presentation see Dic<sub>''n''</sub> above.
| For an alternative presentation see Dic<sub>''n''</sub> above with n=2.
|-
|-
| SL(2, '''Z''')
| SL(2, '''Z''')
| <math>\langle a,b \mid aba=bab, (aba)^4 \rangle</math>
| <math>\langle a,b \mid aba=bab, (aba)^4 \rangle</math>
| topologically you can visualize ''a'' and ''b'' as [[Dehn twist]]s on the [[torus]]
| topologically ''a'' and ''b'' can be visualized as [[Dehn twist]]s on the [[torus]]
|-
|-
| GL(2, '''Z''')
| GL(2, '''Z''')
| <math>\langle a,b,j \mid aba=bab, (aba)^4,j^2,(ja)^2,(jb)^2 \rangle</math>
| <math>\langle a,b,j \mid aba=bab, (aba)^4,j^2,(ja)^2,(jb)^2 \rangle</math>
| nontrivial '''Z'''/2'''Z''' – [[group extension]] of SL(2, '''Z''')
| nontrivial '''Z'''/2'''Z''' – [[group extension]] of SL(2, '''Z''')
Line 187: Line 194:
<blockquote>'''Theorem.''' Every group has a presentation.</blockquote>
<blockquote>'''Theorem.''' Every group has a presentation.</blockquote>


To see this, given a group ''G'', consider the free group ''F<sub>G</sub>'' on ''G''. By the [[universal property]] of free groups, there exists a unique [[group homomorphism]] {{nowrap|φ : ''F<sub>G</sub>'' → ''G''}} whose restriction to ''G'' is the identity map. Let ''K'' be the [[kernel (algebra)|kernel]] of this homomorphism. Then ''K'' is normal in ''F<sub>G</sub>'', therefore is equal to its normal closure, so {{nowrap|1=<''G'' {{!}} ''K''> = ''F<sub>G</sub>''/''K''}}. Since the identity map is surjective, ''φ'' is also surjective, so by the [[Isomorphism theorems|First Isomorphism Theorem]], {{nowrap|1=<''G'' {{!}} ''K''> ≅ im(''φ'') = ''G''}}. This presentation may be highly inefficient if both ''G'' and ''K'' are much larger than necessary.
To see this, given a group ''G'', consider the free group ''F<sub>G</sub>'' on ''G''. By the [[universal property]] of free groups, there exists a unique [[group homomorphism]] {{math|φ : ''F<sub>G</sub>'' → ''G''}} whose restriction to ''G'' is the identity map. Let ''K'' be the [[kernel (algebra)|kernel]] of this homomorphism. Then ''K'' is normal in ''F<sub>G</sub>'', therefore is equal to its normal closure, so {{math|1=''G'' {{!}} ''K'' = ''F<sub>G</sub>''/''K''}}. Since the identity map is surjective, ''φ'' is also surjective, so by the [[Isomorphism theorems|First Isomorphism Theorem]], {{math|1=''G'' {{!}} ''K'' ≅ im(''φ'') = ''G''}}. This presentation may be highly inefficient if both ''G'' and ''K'' are much larger than necessary.


<blockquote>'''Corollary.''' Every finite group has a finite presentation.</blockquote>
<blockquote>'''Corollary.''' Every finite group has a finite presentation.</blockquote>
Line 194: Line 201:


===Novikov–Boone theorem===
===Novikov–Boone theorem===
The negative solution to the [[word problem for groups]] states that there is a finite presentation {{nowrap|<''S'' {{!}} ''R''>}} for which there is no algorithm which, given two words ''u'', ''v'', decides whether ''u'' and ''v'' describe the same element in the group. This was shown by [[Pyotr Novikov]] in 1955<ref>{{Citation|last=Novikov|first=Pyotr S.|authorlink=Pyotr Novikov|year=1955|title=On the algorithmic unsolvability of the word problem in group theory|language=Russian| zbl=0068.01301 | journal=[[Proceedings of the Steklov Institute of Mathematics]]|volume=44|pages=1–143}}</ref> and a different proof was obtained by [[William Boone (mathematician)|William Boone]] in 1958.<ref>{{Citation|last=Boone|first=William W.| authorlink=William Boone (mathematician) | year=1958|title=The word problem|journal=[[Proceedings of the National Academy of Sciences]]|volume=44|issue=10|pages=1061–1065|url=http://www.pnas.org/cgi/reprint/44/10/1061.pdf|format=PDF|doi=10.1073/pnas.44.10.1061|zbl=0086.24701 |pmc=528693}}</ref>
The negative solution to the [[word problem for groups]] states that there is a finite presentation {{math|''S'' {{!}} ''R''}} for which there is no algorithm which, given two words ''u'', ''v'', decides whether ''u'' and ''v'' describe the same element in the group. This was shown by [[Pyotr Novikov]] in 1955<ref>{{Citation|last=Novikov|first=Pyotr S.|author-link=Pyotr Novikov|year=1955|title=On the algorithmic unsolvability of the word problem in group theory|language=ru| zbl=0068.01301 | journal=[[Proceedings of the Steklov Institute of Mathematics]]|volume=44|pages=1–143}}</ref> and a different proof was obtained by [[William Boone (mathematician)|William Boone]] in 1958.<ref>{{Citation|last=Boone|first=William W.| author-link=William Boone (mathematician) | year=1958|title=The word problem|journal=[[Proceedings of the National Academy of Sciences]]|volume=44|issue=10|pages=1061–1065|url=http://www.pnas.org/cgi/reprint/44/10/1061.pdf |archive-url=https://web.archive.org/web/20150924133037/http://www.pnas.org/cgi/reprint/44/10/1061.pdf |archive-date=2015-09-24 |url-status=live|doi=10.1073/pnas.44.10.1061|zbl=0086.24701 |pmc=528693 |pmid=16590307|bibcode=1958PNAS...44.1061B|doi-access=free}}</ref>


== Constructions ==
== Constructions ==
Suppose ''G'' has presentation {{nowrap|<''S'' {{!}} ''R''>}} and ''H'' has presentation {{nowrap|<''T'' {{!}} ''Q''>}} with ''S'' and ''T'' being disjoint. Then
Suppose ''G'' has presentation {{math|''S'' {{!}} ''R''}} and ''H'' has presentation {{math|''T'' {{!}} ''Q''}} with ''S'' and ''T'' being disjoint. Then
* the '''[[free product]]''' {{nowrap|''G'' ∗ ''H''}} has presentation {{nowrap|<''S'', ''T'' {{!}} ''R'', ''Q''>}} and
* the '''[[free product]]''' {{math|''G'' ∗ ''H''}} has presentation {{math|''S'', ''T'' {{!}} ''R'', ''Q''}} and
* the '''[[direct product of groups|direct product]]''' {{nowrap|''G'' × ''H''}} has presentation {{nowrap|<''S'', ''T'' {{!}} ''R'', ''Q'', [''S'',''T'']>}}, where [''S'',''T''] means that every element from ''S'' commutes with every element from ''T'' (cf. [[commutator]]).
* the '''[[direct product of groups|direct product]]''' {{math|''G'' × ''H''}} has presentation {{math|''S'', ''T'' {{!}} ''R'', ''Q'', [''S'', ''T'']}}, where [''S'', ''T''] means that every element from ''S'' commutes with every element from ''T'' (cf. [[commutator]]).


==Deficiency==
==Deficiency==
The '''deficiency''' of a finite presentation {{nowrap|<''S'' {{!}} ''R''>}} is just {{nowrap|{{abs|''S''}} − {{abs|''R''}}}} and the ''deficiency'' of a finitely presented group ''G'', denoted def ''G'', is the maximum of the deficiency over all presentations of ''G''. The deficiency of a finite group is non-positive. The [[Schur multiplicator]] of a finite group ''G'' can be generated by −def ''G'' generators, and ''G'' is '''efficient''' if this number is required.<ref>{{cite book | first1=D.L. | last1=Johnson | first2=E.L. | last2=Robertson | chapter=Finite groups of deficiency zero | pages=275–289 | editor1-first=C.T.C. | editor1-last=Wall | editor-link=C. T. C. Wall | title=Homological Group Theory | series=London Mathematical Society Lecture Note Series | volume=36 | year=1979 | publisher=[[Cambridge University Press]] | isbn=0-521-22729-1 | zbl=0423.20029 }}</ref>
The '''deficiency''' of a finite presentation {{math|''S'' {{!}} ''R''}} is just {{math|{{abs|''S''}} − {{abs|''R''}}}} and the ''deficiency'' of a finitely presented group ''G'', denoted def(''G''), is the maximum of the deficiency over all presentations of ''G''. The deficiency of a finite group is non-positive. The [[Schur multiplicator]] of a finite group ''G'' can be generated by −def(''G'') generators, and ''G'' is '''efficient''' if this number is required.<ref>{{cite book | first1=D.L. | last1=Johnson | first2=E.L. | last2=Robertson | chapter=Finite groups of deficiency zero | pages=275–289 | editor1-first=C.T.C. | editor1-last=Wall | editor-link=C. T. C. Wall | title=Homological Group Theory | series=London Mathematical Society Lecture Note Series | volume=36 | year=1979 | publisher=[[Cambridge University Press]] | isbn=0-521-22729-1 | zbl=0423.20029 }}</ref>


== Geometric group theory ==
== Geometric group theory ==
Line 215: Line 222:
== See also ==
== See also ==
* [[Nielsen transformation]]
* [[Nielsen transformation]]
* [[Tietze transformation]]
* [[Presentation of a module]]
* [[Presentation of a module]]
* [[Presentation of a monoid]]
* [[Set-builder notation]]
* [[Tietze transformation]]


== Notes ==
== Notes ==
Line 222: Line 231:


== References ==
== References ==
*{{cite book | last1=Coxeter | first1=H. S. M. | author-link1=Harold Scott Macdonald Coxeter | last2=Moser | first2=W. O. J. | author-link2=William Oscar Jules Moser | title=Generators and Relations for Discrete Groups | location=New York | publisher=Springer-Verlag | year=1980 | isbn=0-387-09212-9}} ― This useful reference has tables of presentations of all small finite groups, the reflection groups, and so forth.
*{{cite book | last1=Coxeter | first1=H. S. M. | author-link1=Harold Scott Macdonald Coxeter | last2=Moser | first2=W. O. J. | author-link2=William Oscar Jules Moser | title=Generators and Relations for Discrete Groups | location=New York | publisher=Springer-Verlag | year=1980 | isbn=0-387-09212-9}} ― This useful reference has tables of presentations of all small finite groups, the reflection groups, and so forth.
*{{cite book | last=Johnson | first=D. L. | author-link=D. L. Johnson | title=Presentations of Groups | location=Cambridge | publisher=Cambridge University Press | year=1997 | edition=2nd | isbn=0-521-58542-2}} ― Schreier's method, Nielsen's method, free presentations, subgroups and HNN extensions, [[Golod–Shafarevich theorem]], etc.
*{{cite book | last=Johnson | first=D. L. | author-link=D. L. Johnson | title=Presentations of Groups | location=Cambridge | publisher=Cambridge University Press | year=1997 | edition=2nd | isbn=0-521-58542-2}} ― Schreier's method, Nielsen's method, free presentations, subgroups and HNN extensions, [[Golod–Shafarevich theorem]], etc.
*{{cite book | last=Sims | first=Charles C. | author-link=Charles Sims (mathematician) | title=Computation with Finitely Presented Groups | location=Cambridge | publisher=Cambridge University Press | year=1994 | edition=1st | isbn=978-0-521-13507-8}} ― fundamental algorithms from theoretical computer science, computational number theory, and computational commutative algebra, etc.
*{{cite book | last=Sims | first=Charles C. | author-link=Charles Sims (mathematician) | title=Computation with Finitely Presented Groups | url=https://archive.org/details/computationwithf0000sims | url-access=registration | location=Cambridge | publisher=Cambridge University Press | year=1994 | edition=1st | isbn=978-0-521-13507-8}} ― fundamental algorithms from theoretical computer science, computational number theory, and computational commutative algebra, etc.


== External links ==
== External links ==

Latest revision as of 08:01, 8 July 2024

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation

Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R.

As a simple example, the cyclic group of order n has the presentation

where 1 is the group identity. This may be written equivalently as

thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity. Such terms are called relators, distinguishing them from the relations that do include an equals sign.

Every group has a presentation, and in fact many different presentations; a presentation is often the most compact way of describing the structure of the group.

A closely related but different concept is that of an absolute presentation of a group.

Background

[edit]

A free group on a set S is a group where each element can be uniquely described as a finite length product of the form:

where the si are elements of S, adjacent si are distinct, and ai are non-zero integers (but n may be zero). In less formal terms, the group consists of words in the generators and their inverses, subject only to canceling a generator with an adjacent occurrence of its inverse.

If G is any group, and S is a generating subset of G, then every element of G is also of the above form; but in general, these products will not uniquely describe an element of G.

For example, the dihedral group D8 of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order 2; and certainly any element of D8 is a product of r's and f's.

However, we have, for example, rfr = f−1, r7 = r−1, etc., so such products are not unique in D8. Each such product equivalence can be expressed as an equality to the identity, such as

rfrf = 1,
r8 = 1, or
f2 = 1.

Informally, we can consider these products on the left hand side as being elements of the free group F = ⟨r, f, and let R = ⟨rfrf, r8, f2. That is, we let R be the subgroup generated by the strings rfrf, r8, f2, each of which is also equivalent to 1 when considered as products in D8.

If we then let N be the subgroup of F generated by all conjugates x−1Rx of R, then it follows by definition that every element of N is a finite product x1−1r1x1 ... xm−1rm xm of members of such conjugates. It follows that each element of N, when considered as a product in D8, will also evaluate to 1; and thus that N is a normal subgroup of F. Thus D8 is isomorphic to the quotient group F/N. We then say that D8 has presentation

Here the set of generators is S = {r, f }, and the set of relations is R = {r 8 = 1, f 2 = 1, (rf )2 = 1}. We often see R abbreviated, giving the presentation

An even shorter form drops the equality and identity signs, to list just the set of relators, which is {r 8, f 2, (rf )2}. Doing this gives the presentation

All three presentations are equivalent.

Notation

[edit]

Although the notation S | R used in this article for a presentation is now the most common, earlier writers used different variations on the same format. Such notations include the following:[citation needed]

  • S | R
  • (S | R)
  • {S; R}
  • S; R

Definition

[edit]

Let S be a set and let FS be the free group on S. Let R be a set of words on S, so R naturally gives a subset of . To form a group with presentation , take the quotient of by the smallest normal subgroup that contains each element of R. (This subgroup is called the normal closure N of R in .) The group is then defined as the quotient group

The elements of S are called the generators of and the elements of R are called the relators. A group G is said to have the presentation if G is isomorphic to .[1]

It is a common practice to write relators in the form where x and y are words on S. What this means is that . This has the intuitive meaning that the images of x and y are supposed to be equal in the quotient group. Thus, for example, rn in the list of relators is equivalent with .[1]

For a finite group G, it is possible to build a presentation of G from the group multiplication table, as follows. Take S to be the set elements of G and R to be all words of the form , where is an entry in the multiplication table.

Alternate definition

[edit]

The definition of group presentation may alternatively be recast in terms of equivalence classes of words on the alphabet . In this perspective, we declare two words to be equivalent if it is possible to get from one to the other by a sequence of moves, where each move consists of adding or removing a consecutive pair or for some x in S, or by adding or removing a consecutive copy of a relator. The group elements are the equivalence classes, and the group operation is concatenation.[1]

This point of view is particularly common in the field of combinatorial group theory.

Finitely presented groups

[edit]

A presentation is said to be finitely generated if S is finite and finitely related if R is finite. If both are finite it is said to be a finite presentation. A group is finitely generated (respectively finitely related, finitely presented) if it has a presentation that is finitely generated (respectively finitely related, a finite presentation). A group which has a finite presentation with a single relation is called a one-relator group.

Recursively presented groups

[edit]

If S is indexed by a set I consisting of all the natural numbers N or a finite subset of them, then it is easy to set up a simple one to one coding (or Gödel numbering) f : FSN from the free group on S to the natural numbers, such that we can find algorithms that, given f(w), calculate w, and vice versa. We can then call a subset U of FS recursive (respectively recursively enumerable) if f(U) is recursive (respectively recursively enumerable). If S is indexed as above and R recursively enumerable, then the presentation is a recursive presentation and the corresponding group is recursively presented. This usage may seem odd, but it is possible to prove that if a group has a presentation with R recursively enumerable then it has another one with R recursive.

Every finitely presented group is recursively presented, but there are recursively presented groups that cannot be finitely presented. However a theorem of Graham Higman states that a finitely generated group has a recursive presentation if and only if it can be embedded in a finitely presented group.[2] From this we can deduce that there are (up to isomorphism) only countably many finitely generated recursively presented groups. Bernhard Neumann has shown that there are uncountably many non-isomorphic two generator groups. Therefore, there are finitely generated groups that cannot be recursively presented.

History

[edit]

One of the earliest presentations of a group by generators and relations was given by the Irish mathematician William Rowan Hamilton in 1856, in his icosian calculus – a presentation of the icosahedral group.[3] The first systematic study was given by Walther von Dyck, student of Felix Klein, in the early 1880s, laying the foundations for combinatorial group theory.[4]

Examples

[edit]

The following table lists some examples of presentations for commonly studied groups. Note that in each case there are many other presentations that are possible. The presentation listed is not necessarily the most efficient one possible.

Group Presentation Comments
the free group on S A free group is "free" in the sense that it is subject to no relations.
Cn, the cyclic group of order n
Dn, the dihedral group of order 2n Here r represents a rotation and f a reflection
D, the infinite dihedral group
Dicn, the dicyclic group The quaternion group Q8 is a special case when n = 2
Z × Z
Z/mZ × Z/nZ
the free abelian group on S where R is the set of all commutators of elements of S
Sn, the symmetric group on n symbols generators:
relations:
  • ,
  • ,

The last set of relations can be transformed into

using .

Here σi is the permutation that swaps the ith element with the i+1st one. The product σiσi+1 is a 3-cycle on the set {i, i+1, i+2}.
Bn, the braid groups generators:

relations:

  • ,
Note the similarity with the symmetric group; the only difference is the removal of the relation .
V4 ≅ D2, the Klein 4 group
T ≅ A4, the tetrahedral group
O ≅ S4, the octahedral group
I ≅ A5, the icosahedral group
Q8, the quaternion group For an alternative presentation see Dicn above with n=2.
SL(2, Z) topologically a and b can be visualized as Dehn twists on the torus
GL(2, Z) nontrivial Z/2Zgroup extension of SL(2, Z)
PSL(2, Z), the modular group PSL(2, Z) is the free product of the cyclic groups Z/2Z and Z/3Z
Heisenberg group
BS(m, n), the Baumslag–Solitar groups
Tits group [a, b] is the commutator

An example of a finitely generated group that is not finitely presented is the wreath product of the group of integers with itself.

Some theorems

[edit]

Theorem. Every group has a presentation.

To see this, given a group G, consider the free group FG on G. By the universal property of free groups, there exists a unique group homomorphism φ : FGG whose restriction to G is the identity map. Let K be the kernel of this homomorphism. Then K is normal in FG, therefore is equal to its normal closure, so G | K⟩ = FG/K. Since the identity map is surjective, φ is also surjective, so by the First Isomorphism Theorem, G | K⟩ ≅ im(φ) = G. This presentation may be highly inefficient if both G and K are much larger than necessary.

Corollary. Every finite group has a finite presentation.

One may take the elements of the group for generators and the Cayley table for relations.

Novikov–Boone theorem

[edit]

The negative solution to the word problem for groups states that there is a finite presentation S | R for which there is no algorithm which, given two words u, v, decides whether u and v describe the same element in the group. This was shown by Pyotr Novikov in 1955[5] and a different proof was obtained by William Boone in 1958.[6]

Constructions

[edit]

Suppose G has presentation S | R and H has presentation T | Q with S and T being disjoint. Then

  • the free product GH has presentation S, T | R, Q and
  • the direct product G × H has presentation S, T | R, Q, [S, T]⟩, where [S, T] means that every element from S commutes with every element from T (cf. commutator).

Deficiency

[edit]

The deficiency of a finite presentation S | R is just |S| − |R| and the deficiency of a finitely presented group G, denoted def(G), is the maximum of the deficiency over all presentations of G. The deficiency of a finite group is non-positive. The Schur multiplicator of a finite group G can be generated by −def(G) generators, and G is efficient if this number is required.[7]

Geometric group theory

[edit]

A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.

Further, some properties of this graph (the coarse geometry) are intrinsic, meaning independent of choice of generators.

See also

[edit]

Notes

[edit]
  1. ^ a b c Peifer, David (1997). "An Introduction to Combinatorial Group Theory and the Word Problem". Mathematics Magazine. 70 (1): 3–10. doi:10.1080/0025570X.1997.11996491.
  2. ^ Higman, G. (1961-08-08). "Subgroups of finitely presented groups". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 262 (1311): 455–475. Bibcode:1961RSPSA.262..455H. doi:10.1098/rspa.1961.0132. ISSN 0080-4630. S2CID 120100270.
  3. ^ Sir William Rowan Hamilton (1856). "Memorandum respecting a new System of Roots of Unity" (PDF). Philosophical Magazine. 12: 446. Archived (PDF) from the original on 2003-06-26.
  4. ^ Stillwell, John (2002). Mathematics and its history. Springer. p. 374. ISBN 978-0-387-95336-6.
  5. ^ Novikov, Pyotr S. (1955), "On the algorithmic unsolvability of the word problem in group theory", Proceedings of the Steklov Institute of Mathematics (in Russian), 44: 1–143, Zbl 0068.01301
  6. ^ Boone, William W. (1958), "The word problem" (PDF), Proceedings of the National Academy of Sciences, 44 (10): 1061–1065, Bibcode:1958PNAS...44.1061B, doi:10.1073/pnas.44.10.1061, PMC 528693, PMID 16590307, Zbl 0086.24701, archived (PDF) from the original on 2015-09-24
  7. ^ Johnson, D.L.; Robertson, E.L. (1979). "Finite groups of deficiency zero". In Wall, C.T.C. (ed.). Homological Group Theory. London Mathematical Society Lecture Note Series. Vol. 36. Cambridge University Press. pp. 275–289. ISBN 0-521-22729-1. Zbl 0423.20029.

References

[edit]
[edit]