Page:Popular Science Monthly Volume 66.djvu/87

From Wikisource
Revision as of 14:52, 30 April 2017 by Ineuw (talk | contribs) (→‎Proofread)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
UTILITARIAN SCIENCE.
83

apply knowledge to action. In practical life the American makes the most of all he knows. Favoring this is the absence of caste feeling. There is no prejudice in favor of the idle man. Only idlers take the members of the leisure class seriously. There is, again, no social discrimination against the engineer as compared with other learned professions. The best of our students become working engineers without loss of social prestige of any sort. Another reason is found in the great variety of industrial openings in America, and still another in the sudden growth of American colleges into universities, and universities in which both pure and applied sciences find a generous welcome. For this the Morrill Act, under which each state has developed a technical school, under federal aid, is largely responsible. In the change from the small college of thirty years ago, a weak copy of English models, to the American university of to-day, many elements have contributed. Among these is the current of enlightenment from Germany, and at the same time the influence of far-seeing leaders in education. Notable among these have been Tappan, Eliot, Agassiz and White. To widen the range of university instruction so as to meet all the intellectual, esthetic and industrial needs of the ablest men is the work of the modern university. To do this work is to give a great impetus to pure and to applied science.

Two classes of men come to the front in the development of engineering: the one, men of deep scientific knowledge, to whom advance of knowledge is due, the other the great constructive engineers; men who can work in the large and can manage great enterprises with scientific accuracy and practical success. Everywhere the tendency in training is away from mere craftsmanship and towards power of administration. The demands of the laboratory leave less and less time for the shop. "Two classes of students," says a correspondent, "should be encouraged in our universities: First, the man whose scientific attainments are such that he will be able to develop new and important processes, the details of which may be directly applied. This type of man is the scientific engineer. The other is the so-called practical man, who will not only actually carry on engineering work, but may be called on to manage large enterprises. If his temperament and ability are such as to give him a thorough command of business methods and details, while he is in addition a good engineer, he will find a field of great usefulness before him on leaving the university. The university should encourage young men to undertake the general executive work necessary to handling men and in the many details of large enterprises. The successful man of this character is necessarily a leader and the university should recognize that such a man can be of great influence in the world, if he is thoroughly and broadly educated."

"We need," says another correspondent, "men possessing a better general training than most of those now entering and leaving our engi-