Lompat ke isi

Kondensat Bose–Einstein: Perbedaan antara revisi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Konten dihapus Konten ditambahkan
Idioma-bot (bicara | kontrib)
k r2.7.3) (bot Menambah: lt:Bozė-Einšteino kondensatas
InternetArchiveBot (bicara | kontrib)
Rescuing 2 sources and tagging 0 as dead.) #IABot (v2.0.8.5
 
(7 revisi perantara oleh 6 pengguna tidak ditampilkan)
Baris 1: Baris 1:
'''Kondensat Bose-Einstein''' adalah sebuah [[fase benda]] yang terbentuk oleh [[boson]] didinginkan ke [[suhu]] yang mendekati [[nol mutlak]]. Kondensat pertama dibuat oleh [[Eric Cornell]] dan [[Carl Wieman]] pada [[1995]] di [[Universitas Colorado Boulder]], menggunakan gas atom [[rubidium]] yang didinginkan sampai 170 [[Kelvin|nanoKelvin]] (nK). Dalam kondisi tersebut, sebagian besar atom jatuh ke [[keadaan kuantum]] terendah.
'''Kondensat Bose–Einstein''' adalah sebuah [[fase benda]] yang terbentuk oleh [[boson]] didinginkan ke [[suhu]] yang mendekati [[nol mutlak]]. Kondensat pertama dibuat oleh [[Eric Cornell]] dan [[Carl Wieman]] pada [[1995]] di [[Universitas Colorado Boulder]], menggunakan gas atom [[rubidium]] yang didinginkan sampai 170 [[Kelvin|nanoKelvin]] (nK). Dalam kondisi tersebut, sebagian besar atom jatuh ke [[keadaan kuantum]] terendah.
<!--

[[Berkas:Bose_Einstein_condensate.png|right|thumb|350px|Velocity-distribution data confirming the discovery of a new phase of matter, the Bose-Einstein condensate, out of a gas of rubidium atoms. The artificial colors indicate the number of atoms at each velocity, with red being the fewest and white being the most. The areas appearing white and light blue are at the lowest velocities. Left: just before the appearance of the Bose-Einstein condensate. Center: just after the appearance of the condensate. Right: after further evaporation, leaving a sample of nearly pure condensate. The peak is not infinitely narrow because of the [[uncertainty principle|Heisenberg uncertainty principle]]: since the atoms are trapped in a particular region of space, their velocity distribution necessarily possesses a certain minimum width.]]
[[Berkas:Bose_Einstein_condensate.png|right|thumb|350px|Velocity-distribution data confirming the discovery of a new phase of matter, the Bose-Einstein condensate, out of a gas of rubidium atoms. The artificial colors indicate the number of atoms at each velocity, with red being the fewest and white being the most. The areas appearing white and light blue are at the lowest velocities. Left: just before the appearance of the Bose-Einstein condensate. Center: just after the appearance of the condensate. Right: after further evaporation, leaving a sample of nearly pure condensate. The peak is not infinitely narrow because of the [[uncertainty principle|Heisenberg uncertainty principle]]: since the atoms are trapped in a particular region of space, their velocity distribution necessarily possesses a certain minimum width.]]


Baris 6: Baris 6:


Kondensat Bose-Einstein terkenal oleh orang awam sebagai suatu fluida suhu sangat rendah dengan sifat yang aneh, seperti dengan spontan mengalir keluar dari wadahnya. Efek ini adalah konsekuensi dari [[mekanika kuantum]], yang menyatakan bahwa sistem hanya dapat mendapatkan energi dalam langkah terpisah. Sekarang, bila sebuah sistem dalam keadaan suhu sangat rendah di mana dia dalam keadaan energi terendahnya, dia tidak lagi dapat mengurangi energinya, juga tidak dengan gesekan. Oleh karena itu, tanpa gesekan, fluida akan mudah menolak gravitasi karena [[adhesi]] antara fluida dan tembok wadah, dan ia akan membentuk posisi yang paling menguntungkan, misal, ke seluruh wadah.
Kondensat Bose-Einstein terkenal oleh orang awam sebagai suatu fluida suhu sangat rendah dengan sifat yang aneh, seperti dengan spontan mengalir keluar dari wadahnya. Efek ini adalah konsekuensi dari [[mekanika kuantum]], yang menyatakan bahwa sistem hanya dapat mendapatkan energi dalam langkah terpisah. Sekarang, bila sebuah sistem dalam keadaan suhu sangat rendah di mana dia dalam keadaan energi terendahnya, dia tidak lagi dapat mengurangi energinya, juga tidak dengan gesekan. Oleh karena itu, tanpa gesekan, fluida akan mudah menolak gravitasi karena [[adhesi]] antara fluida dan tembok wadah, dan ia akan membentuk posisi yang paling menguntungkan, misal, ke seluruh wadah.

<!--
==Teori==
==Teori==
Kembalinya atom ke keadaan quantum tunggal disebut sebagai '''Bose condensation''' or '''Bose-Einstein condensation'''. Fenomena ini telah diprediksi pada [[1920an]] oleh [[Satyendra Nath Bose]] dan [[Albert Einstein]], berdasarkan kerja Bose's tentang [[mekanika statistik]] dari [[photon]], yang kemudian diformulasikan dan digeneralisasikan oleh Einstein. Salah satu hasil pengorbanan Bose dan Einstein antara lain [[gas Bose]], berdasar pada [[statistik Bose-Einstein]], dimana menggambarkan distribusi statistik dari [[partikel identik]] dengan [[spin]] [[integer]], sekarang dikenal sebagai [[boson]]. Partikel boson, termasuk di dalamnya photon yang mirip dengan atom sperti [[helium|helium-4]], diperbolehkan membagi [[keadaan quantum]] dengan yang lain. Pertimbangan Einstein bahwa atom boson yang didinginkan pada temperatur sangat rendah dapat menyebabkan jatuh (atau "mampat") menuju keadaan quamtum yang dapat dimungkinkan, menghasilkan sebuah bentuk baru dari materi.
Kembalinya atom ke keadaan quantum tunggal disebut sebagai '''Bose condensation''' or '''Bose-Einstein condensation'''. Fenomena ini telah diprediksi pada [[1920an]] oleh [[Satyendra Nath Bose]] dan [[Albert Einstein]], berdasarkan kerja Bose's tentang [[mekanika statistik]] dari [[photon]], yang kemudian diformulasikan dan digeneralisasikan oleh Einstein. Salah satu hasil pengorbanan Bose dan Einstein antara lain [[gas Bose]], berdasar pada [[statistik Bose-Einstein]], dimana menggambarkan distribusi statistik dari [[partikel identik]] dengan [[spin]] [[integer]], sekarang dikenal sebagai [[boson]]. Partikel boson, termasuk di dalamnya photon yang mirip dengan atom sperti [[helium|helium-4]], diperbolehkan membagi [[keadaan quantum]] dengan yang lain. Pertimbangan Einstein bahwa atom boson yang didinginkan pada temperatur sangat rendah dapat menyebabkan jatuh (atau "mampat") menuju keadaan quamtum yang dapat dimungkinkan, menghasilkan sebuah bentuk baru dari materi.
Baris 61: Baris 61:
Compared to more commonly-encountered states of matter Bose-Einstein condensates are extremely fragile. The slightest interaction with the outside world can be enough to warm them past the condensation threshold, forming a normal gas and losing their interesting properties. It is likely to be some time before any practical applications are developed.
Compared to more commonly-encountered states of matter Bose-Einstein condensates are extremely fragile. The slightest interaction with the outside world can be enough to warm them past the condensation threshold, forming a normal gas and losing their interesting properties. It is likely to be some time before any practical applications are developed.


Nevertheless, they have proved to be useful in exploring a wide range of questions in fundamental physics, and the years since the initial discoveries by the JILA and MIT groups have seen an explosion in experimental and theoretical activity. Examples include experiments that have demonstrated [[interference]] between colliding Bose condensates due to [[wave-particle duality]] [http://cua.mit.edu/ketterle_group/Projects_1997/Interference/Interference_BEC.htm], the study of [[superfluidity]] and quantized [[vortex|vortices]] [http://www.aip.org/pt/vol-53/iss-8/p19.html], and the [[speed of light|slowing of light]] pulses to very low speeds using [[electromagnetically induced transparency]] [http://www.europhysicsnews.com/full/26/article1/article1.html]. Experimentalists have also realized "optical lattices", where the interference pattern from overlapping lasers provides a periodic potential for the condensate. These have been used to explore the transition between a superfluid and a [[Mott insulator]] [http://qpt.physics.harvard.edu/qptsi.html], and may be useful in studying Bose-Einstein condensation in less than three dimensions, for example the [[Tonks-Girardeau gas]].
Nevertheless, they have proved to be useful in exploring a wide range of questions in fundamental physics, and the years since the initial discoveries by the JILA and MIT groups have seen an explosion in experimental and theoretical activity. Examples include experiments that have demonstrated [[interference]] between colliding Bose condensates due to [[wave-particle duality]] [http://cua.mit.edu/ketterle_group/Projects_1997/Interference/Interference_BEC.htm], the study of [[superfluidity]] and quantized [[vortex|vortices]] [http://www.aip.org/pt/vol-53/iss-8/p19.html], and the [[speed of light|slowing of light]] pulses to very low speeds using [[electromagnetically induced transparency]] [http://www.europhysicsnews.com/full/26/article1/article1.html]. Experimentalists have also realized "optical lattices", where the interference pattern from overlapping lasers provides a periodic potential for the condensate. These have been used to explore the transition between a superfluid and a [[Mott insulator]] [http://qpt.physics.harvard.edu/qptsi.html], and may be useful in studying Bose-Einstein condensation in less than three dimensions, for example the [[Tonks-Girardeau gas]].


Bose-Einstein condensates composed of a wide range of [[isotope|isotopes]] have been produced [http://physicsweb.org/articles/world/18/6/1].
Bose-Einstein condensates composed of a wide range of [[isotope|isotopes]] have been produced [http://physicsweb.org/articles/world/18/6/1].


Related experiments in cooling [[fermions]] rather than [[bosons]] to extremely low temperatures have created [[degenerate matter|degenerate]] gases, where the atoms do not congregate in a single state due to the [[Pauli exclusion principle]]. To exhibit Bose-Einstein condensate, the fermions must "pair up" to form compound particles (e.g. [[molecules]] or [[BCS theory|Cooper pairs]]) that are bosons. The first [[molecule|molecular]] Bose-Einstein condensates were created in November [[2003]] by the groups of [[Rudolf Grimm]] at the [[University of Innsbruck]], [[Deborah S. Jin]] at the [[University of Colorado at Boulder]] and [[Wolfgang Ketterle]] at [[Massachusetts Institute of Technology|MIT]]. Jin quickly went on to create the first [[Fermionic condensate|fermionic condensate]] comprised of Cooper pairs [http://physicsweb.org/articles/news/8/1/14/1].
Related experiments in cooling [[fermions]] rather than [[bosons]] to extremely low temperatures have created [[degenerate matter|degenerate]] gases, where the atoms do not congregate in a single state due to the [[Pauli exclusion principle]]. To exhibit Bose-Einstein condensate, the fermions must "pair up" to form compound particles (e.g. [[molecules]] or [[BCS theory|Cooper pairs]]) that are bosons. The first [[molecule|molecular]] Bose-Einstein condensates were created in November [[2003]] by the groups of [[Rudolf Grimm]] at the [[University of Innsbruck]], [[Deborah S. Jin]] at the [[University of Colorado at Boulder]] and [[Wolfgang Ketterle]] at [[Massachusetts Institute of Technology|MIT]]. Jin quickly went on to create the first [[Fermionic condensate|fermionic condensate]] comprised of Cooper pairs [http://physicsweb.org/articles/news/8/1/14/1].
Baris 80: Baris 80:


== Pranala luar ==
== Pranala luar ==
* [http://www.colorado.edu/physics/2000/bec/index.html BEC Homepage] General introduction to Bose-Einstein condensation
* [http://www.colorado.edu/physics/2000/bec/index.html BEC Homepage] {{Webarchive|url=https://web.archive.org/web/20051220142130/http://www.colorado.edu/physics/2000/bec/index.html |date=2005-12-20 }} General introduction to Bose-Einstein condensation
* [http://nobelprize.org/physics/laureates/2001/index.html Nobel Prize in Physics 2001] - for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates
* [http://nobelprize.org/physics/laureates/2001/index.html Nobel Prize in Physics 2001] - for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates
* [http://www.physicstoday.org/pt/vol-54/iss-12/p14.html Physics Today: Cornell, Ketterle, and Wieman Share Nobel Prize for Bose-Einstein Condensates]
* [http://www.physicstoday.org/pt/vol-54/iss-12/p14.html Physics Today: Cornell, Ketterle, and Wieman Share Nobel Prize for Bose-Einstein Condensates] {{Webarchive|url=https://web.archive.org/web/20071024134547/http://www.physicstoday.org/pt/vol-54/iss-12/p14.html |date=2007-10-24 }}
* [http://jilawww.colorado.edu/bec/ Bose-Einstein Condensates at JILA]
* [http://jilawww.colorado.edu/bec/ Bose-Einstein Condensates at JILA]
* [http://cua.mit.edu/ketterle_group/home.htm Alkali Quantum Gases at MIT]
* [http://cua.mit.edu/ketterle_group/home.htm Alkali Quantum Gases at MIT] {{Webarchive|url=https://web.archive.org/web/20051226061445/http://cua.mit.edu/ketterle_group/home.htm |date=2005-12-26 }}
* [http://www.physics.uq.edu.au/atomoptics/ Atom Optics at UQ]
* [http://www.physics.uq.edu.au/atomoptics/ Atom Optics at UQ]
* [http://www.lorentz.leidenuniv.nl/history/Einstein_archive/ Einstein's manuscript on the Bose-Einstein condensate discovered at Leiden University]
* [http://www.lorentz.leidenuniv.nl/history/Einstein_archive/ Einstein's manuscript on the Bose-Einstein condensate discovered at Leiden University]
Baris 108: Baris 108:
* Lev P. Pitaevskii and S. Stringari, "Bose-Einstein Condensation", Clarendon Press, Oxford, 2003.
* Lev P. Pitaevskii and S. Stringari, "Bose-Einstein Condensation", Clarendon Press, Oxford, 2003.
* Mackie M, Suominen KA, Javanainen J., "Mean-field theory of Feshbach-resonant interactions in 85Rb condensates." Phys Rev Lett. 2002 Oct 28;89(18):180403.
* Mackie M, Suominen KA, Javanainen J., "Mean-field theory of Feshbach-resonant interactions in 85Rb condensates." Phys Rev Lett. 2002 Oct 28;89(18):180403.
* Oxford Experimental BEC Group. http://www-matterwave.physics.ox.ac.uk
* Oxford Experimental BEC Group. http://www-matterwave.physics.ox.ac.uk {{Webarchive|url=https://web.archive.org/web/20101013193224/http://www-matterwave.physics.ox.ac.uk/ |date=2010-10-13 }}

{{Authority control}}


[[Kategori:Albert Einstein]]
[[Kategori:Albert Einstein]]
[[Kategori:Mekanika kuantum]]
[[Kategori:Mekanika kuantum]]
[[Kategori:Fisika benda terkondensasi]]
[[Kategori:Fisika benda terkondensasi]]

[[ar:تكاثف بوز وأينشتاين]]
[[bg:Бозе-Айнщайнова кондензация]]
[[ca:Condensat de Bose-Einstein]]
[[cs:Boseho-Einsteinův kondenzát]]
[[da:Bose-Einstein-kondensat]]
[[de:Bose-Einstein-Kondensat]]
[[el:Συμπύκνωμα Bose-Einstein]]
[[en:Bose–Einstein condensate]]
[[es:Condensado de Bose-Einstein]]
[[fa:چگالش بوز-اینشتین]]
[[fi:Bosen–Einsteinin kondensaatti]]
[[fr:Condensat de Bose-Einstein]]
[[gl:Condensado de Bose-Einstein]]
[[he:עיבוי בוז-איינשטיין]]
[[hy:Բոզե-Այնշտայնի կոնդենսատ]]
[[it:Condensato di Bose-Einstein]]
[[ja:ボース=アインシュタイン凝縮]]
[[kk:Бозе–Эйнштейн конденсаттануы]]
[[ko:보스-아인슈타인 응축]]
[[lt:Bozė-Einšteino kondensatas]]
[[ml:ബോസ്-ഐന്‍സ്റ്റൈന്‍ കണ്ടന്‍സേറ്റ്]]
[[mn:Бозе-Эйнштейний конденцат]]
[[nl:Bose-Einsteincondensaat]]
[[nn:Bose-Einsteinkondensat]]
[[no:Bose-Einstein-kondensasjon]]
[[pl:Kondensat Bosego-Einsteina]]
[[pt:Condensado de Bose-Einstein]]
[[ru:Конденсат Бозе — Эйнштейна]]
[[simple:Bose–Einstein condensate]]
[[sk:Boseho-Einsteinov kondenzát]]
[[sl:Bose-Einsteinov kondenzat]]
[[sv:Bose–Einstein-kondensat]]
[[ta:போசு-ஐன்ஸ்டைன் செறிபொருள்]]
[[th:ของเหลวผลควบแน่นโบส–ไอน์สไตน์]]
[[tr:Bose-Einstein yoğunlaşması]]
[[uk:Конденсація Бозе—Ейнштейна]]
[[vi:Ngưng tụ Bose-Einstein]]
[[zh:玻色–爱因斯坦凝聚]]

Revisi terkini sejak 22 Desember 2021 17.49

Kondensat Bose–Einstein adalah sebuah fase benda yang terbentuk oleh boson didinginkan ke suhu yang mendekati nol mutlak. Kondensat pertama dibuat oleh Eric Cornell dan Carl Wieman pada 1995 di Universitas Colorado Boulder, menggunakan gas atom rubidium yang didinginkan sampai 170 nanoKelvin (nK). Dalam kondisi tersebut, sebagian besar atom jatuh ke keadaan kuantum terendah.

Lihat pula

[sunting | sunting sumber]

Pranala luar

[sunting | sunting sumber]

Referensi

[sunting | sunting sumber]
  • S. N. Bose, Z. Phys. 26, 178 (1924)
  • A. Einstein, Sitz. Ber. Preuss. Akad. Wiss. (Berlin) 22, 261 (1924)
  • L.D. Landau, J. Phys. USSR 5, 71 (1941)
  • C. J. Pethick and H. Smith, "Bose-Einstein Condensation in Dilute Gases", Cambridge University Press, Cambridge, 2001.
  • Lev P. Pitaevskii and S. Stringari, "Bose-Einstein Condensation", Clarendon Press, Oxford, 2003.
  • Mackie M, Suominen KA, Javanainen J., "Mean-field theory of Feshbach-resonant interactions in 85Rb condensates." Phys Rev Lett. 2002 Oct 28;89(18):180403.
  • Oxford Experimental BEC Group. http://www-matterwave.physics.ox.ac.uk Diarsipkan 2010-10-13 di Wayback Machine.