跳转到内容

冰七:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
标签已被回退
标签已被回退
第1行: 第1行:
[[Image:Iceviistructure-ru.gif|thumb|冰七的晶體結構]]
[[Image:Iceviistructure-ru.gif|thumb|冰七的晶體結構]]
'''冰七'''(Ice VII)是[[冰]]的[[立方晶系|立方晶体]]形式,可在3[[帕斯卡|吉帕]](30000个大气压)压力下将液态水冷却至室温以下或通过在95 K低温以下减压[[重水]](D<sub>2</sub>O)[[冰六]]而形成。(不同类型的冰,从[[冰二]]到冰十八,都已在实验室不同温度和压力下制出。在[[珀西·布里奇曼|布里奇曼]]的命名法中,普通水冰被称为[[冰一氢|冰一<sub>h</sub>]])。冰七在很宽的温度和压力范围内保持[[准稳态]],但在120 K(-153摄氏度)以上则转变为低密度[[无定形冰]](LDA)<ref>S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday and W. G. Marshall, Metastable ice VII at low temperature and ambient pressure, Nature 398 (1999) 681–684.</ref>。冰七与液态水和冰六在 355 K 和 2.216 吉帕处具有[[三相点]],融化线至少延伸到715 K(442摄氏度)和 10 吉帕<ref name="IAPWS">{{cite web | url = http://www.iapws.org/relguide/meltsub.pdf | title = IAPWS, Release on the pressure along the melting and the sublimation curves of ordinary water substance, 1993 | access-date = 2008-02-22 | url-status = dead | archive-url = https://web.archive.org/web/20081006141126/http://www.iapws.org/relguide/meltsub.pdf | archive-date = 2008-10-06 }}</ref>。冰七可通过冲击波的快速压缩在纳秒内形成<ref>{{cite journal | last1 = Dolan | first1 = D | last2 = Gupta | first2 = Y | title = Nanosecond freezing of water under multiple shock wave compression: Optical transmission and imaging measurements | journal = J. Chem. Phys. | volume = 121 | issue = 18 | pages = 9050–9057 | year = 2004 | doi = 10.1063/1.1805499 | pmid = 15527371 | bibcode = 2004JChPh.121.9050D }}</ref><ref>{{cite journal | last1 = Myint | first1 = P | last2 = Benedict | first2 = L | last3 = Belof | first3 = J | title = Free energy models for ice VII and liquid water derived from pressure, entropy, and heat capacity relations | journal = J. Chem. Phys. | volume = 147 | issue = 8 | pages = 084505 | year = 2017 | doi = 10.1063/1.4989582 | pmid = 28863506 | bibcode = 2017JChPh.147h4505M | osti = 1377687 }}</ref>,也可通过在环境温度下加压冰六来产生<ref name="Johari et al.">{{Citation |first1=G. P. |last1=Johari |first2=A. |last2=Lavergne |first3=E. |last3=Whalley |name-list-style=amp |journal=Journal of Chemical Physics |volume=61 |issue=10 |pages=4292 |year=1974 |title=Dielectric properties of ice VII and VIII and the phase boundary between ice VI and VII |doi=10.1063/1.1681733 |bibcode = 1974JChPh..61.4292J }}</ref>。在 5 吉帕压力附近,冰七将转变为四方晶系的冰七<sub>t</sub><ref name="viit">{{cite journal |last1=Grande |first1=Zachary M. |display-authors=etal |title=Pressure-driven symmetry transitions in dense H2O ice |journal=APS Physics |doi=10.1103/PhysRevB.105.104109}}</ref>。
'''冰七'''(Ice VII)是[[冰]]的[[立方晶系|立方晶体]]形式,可在3[[帕斯卡|吉帕]](30000个大气压)压力下将液态水冷却至室温以下或通过在95 K低温以下减压[[重水]](D<sub>2</sub>O)[[冰六]]而形成。(不同类型的冰,从[[冰二]]到[[冰十八]],都已在实验室不同温度和压力下制出。在[[珀西·布里奇曼|布里奇曼]]的命名法中,普通水冰被称为[[冰一氢|冰一<sub>h</sub>]])。冰七在很宽的温度和压力范围内保持[[准稳态]],但在120 K(-153摄氏度)以上则转变为低密度[[无定形冰]](LDA)<ref>S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday and W. G. Marshall, Metastable ice VII at low temperature and ambient pressure, Nature 398 (1999) 681–684.</ref>。冰七与液态水和冰六在 355 K 和 2.216 吉帕处具有[[三相点]],融化线至少延伸到715 K(442摄氏度)和 10 吉帕<ref name="IAPWS">{{cite web | url = http://www.iapws.org/relguide/meltsub.pdf | title = IAPWS, Release on the pressure along the melting and the sublimation curves of ordinary water substance, 1993 | access-date = 2008-02-22 | url-status = dead | archive-url = https://web.archive.org/web/20081006141126/http://www.iapws.org/relguide/meltsub.pdf | archive-date = 2008-10-06 }}</ref>。冰七可通过冲击波的快速压缩在纳秒内形成<ref>{{cite journal | last1 = Dolan | first1 = D | last2 = Gupta | first2 = Y | title = Nanosecond freezing of water under multiple shock wave compression: Optical transmission and imaging measurements | journal = J. Chem. Phys. | volume = 121 | issue = 18 | pages = 9050–9057 | year = 2004 | doi = 10.1063/1.1805499 | pmid = 15527371 | bibcode = 2004JChPh.121.9050D }}</ref><ref>{{cite journal | last1 = Myint | first1 = P | last2 = Benedict | first2 = L | last3 = Belof | first3 = J | title = Free energy models for ice VII and liquid water derived from pressure, entropy, and heat capacity relations | journal = J. Chem. Phys. | volume = 147 | issue = 8 | pages = 084505 | year = 2017 | doi = 10.1063/1.4989582 | pmid = 28863506 | bibcode = 2017JChPh.147h4505M | osti = 1377687 }}</ref>,也可通过在环境温度下加压冰六来产生<ref name="Johari et al.">{{Citation |first1=G. P. |last1=Johari |first2=A. |last2=Lavergne |first3=E. |last3=Whalley |name-list-style=amp |journal=Journal of Chemical Physics |volume=61 |issue=10 |pages=4292 |year=1974 |title=Dielectric properties of ice VII and VIII and the phase boundary between ice VI and VII |doi=10.1063/1.1681733 |bibcode = 1974JChPh..61.4292J }}</ref>。在 5 吉帕压力附近,冰七将转变为四方晶系的冰七<sub>t</sub><ref name="viit">{{cite journal |last1=Grande |first1=Zachary M. |display-authors=etal |title=Pressure-driven symmetry transitions in dense H2O ice |journal=APS Physics |doi=10.1103/PhysRevB.105.104109}}</ref>。


像大多数冰相(包括[[冰一氢|冰一<sub>h</sub>]])一样,冰七的[[氢]]原子位置是无序的<ref name="Petrenko">{{Citation |first1=V. F. |last1=Petrenko |first2=R. W. |last2=Whitworth |title=The Physics of Ice |publisher=Oxford University Press |location=New York |year=2002 }}.</ref>,此外,[[氧]]原子在多个位置上也无序<ref name="kuhs">{{Citation |first1=W. F. |last1=Kuhs |first2=J. L. |last2=Finney |first3=C. |last3=Vettier |first4=D. V. |last4=Bliss |name-list-style=amp |journal=Journal of Chemical Physics |volume=81 |issue=8 |pages=3612–3623 |year=1984 |title=Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction |doi=10.1063/1.448109 |bibcode = 1984JChPh..81.3612K }}.</ref><ref name="jorgensen">{{Citation |first1=J. D. |last1=Jorgensen |first2=T. G. |last2=Worlton |journal=Journal of Chemical Physics |volume=83 |issue=1 |pages=329–333 |year=1985 |title=Disordered structure of D<sub>2</sub>O ice VII from in situ neutron powder diffraction |doi=10.1063/1.449867 |bibcode = 1985JChPh..83..329J |url=https://zenodo.org/record/1232091 }}.</ref><ref name="nelmes">{{Citation |first1=R. J. |last1=Nelmes |first2=J. S. |last2=Loveday |first3=W. G. |last3=Marshall |journal=[[Physical Review Letters]] |volume=81 |issue=13 |pages=2719–2722 |year=1998 |title=Multisite Disordered Structure of Ice VII to 20 GPa |doi=10.1103/PhysRevLett.81.2719 |bibcode=1998PhRvL..81.2719N|display-authors=etal}}.</ref>。冰七的结构包含两个互穿(但非键合)亚晶格形式的[[氢键]]框架<ref name="kuhs"/>,氢键穿过水的六聚体中心,因此不连接两个晶格。冰七的密度约为1.65克/厘米<sup>3</sup>(在2.5吉帕和25摄氏度(华氏77度;298 K)时)<ref>D. Eisenberg and W. Kauzmann, The structure and properties of water (Oxford University Press, London, 1969); (b) The dodecahedral interstitial model is described in L. Pauling, The structure of water, In Hydrogen bonding, Ed. D. Hadzi and H. W. Thompson ([[Pergamon Press]] Ltd, London, 1959) pp 1–6.</ref>,由于网格内 O–O 间距较可相互渗透的距离大8%(0.1兆帕时),因此比[[冰Ic|立方冰]]密度小两倍。立方晶胞的边长为0.33501[[纳米]](对于D<sub>2</sub>O,在2.6吉帕和22摄氏度(华氏72度;295K)时),内含两个水分子<ref name="jorgensen"/>。
像大多数冰相(包括[[冰一氢|冰一<sub>h</sub>]])一样,冰七的[[氢]]原子位置是无序的<ref name="Petrenko">{{Citation |first1=V. F. |last1=Petrenko |first2=R. W. |last2=Whitworth |title=The Physics of Ice |publisher=Oxford University Press |location=New York |year=2002 }}.</ref>,此外,[[氧]]原子在多个位置上也无序<ref name="kuhs">{{Citation |first1=W. F. |last1=Kuhs |first2=J. L. |last2=Finney |first3=C. |last3=Vettier |first4=D. V. |last4=Bliss |name-list-style=amp |journal=Journal of Chemical Physics |volume=81 |issue=8 |pages=3612–3623 |year=1984 |title=Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction |doi=10.1063/1.448109 |bibcode = 1984JChPh..81.3612K }}.</ref><ref name="jorgensen">{{Citation |first1=J. D. |last1=Jorgensen |first2=T. G. |last2=Worlton |journal=Journal of Chemical Physics |volume=83 |issue=1 |pages=329–333 |year=1985 |title=Disordered structure of D<sub>2</sub>O ice VII from in situ neutron powder diffraction |doi=10.1063/1.449867 |bibcode = 1985JChPh..83..329J |url=https://zenodo.org/record/1232091 }}.</ref><ref name="nelmes">{{Citation |first1=R. J. |last1=Nelmes |first2=J. S. |last2=Loveday |first3=W. G. |last3=Marshall |journal=[[Physical Review Letters]] |volume=81 |issue=13 |pages=2719–2722 |year=1998 |title=Multisite Disordered Structure of Ice VII to 20 GPa |doi=10.1103/PhysRevLett.81.2719 |bibcode=1998PhRvL..81.2719N|display-authors=etal}}.</ref>。冰七的结构包含两个互穿(但非键合)亚晶格形式的[[氢键]]框架<ref name="kuhs"/>,氢键穿过水的六聚体中心,因此不连接两个晶格。冰七的密度约为1.65克/厘米<sup>3</sup>(在2.5吉帕和25摄氏度(华氏77度;298 K)时)<ref>D. Eisenberg and W. Kauzmann, The structure and properties of water (Oxford University Press, London, 1969); (b) The dodecahedral interstitial model is described in L. Pauling, The structure of water, In Hydrogen bonding, Ed. D. Hadzi and H. W. Thompson ([[Pergamon Press]] Ltd, London, 1959) pp 1–6.</ref>,由于网格内 O–O 间距较可相互渗透的距离大8%(0.1兆帕时),因此比[[冰Ic|立方冰]]密度小两倍。立方晶胞的边长为0.33501[[纳米]](对于D<sub>2</sub>O,在2.6吉帕和22摄氏度(华氏72度;295K)时),内含两个水分子<ref name="jorgensen"/>。

2022年6月5日 (日) 01:23的版本

冰七的晶體結構

冰七(Ice VII)是立方晶体形式,可在3吉帕(30000个大气压)压力下将液态水冷却至室温以下或通过在95 K低温以下减压重水(D2O)冰六而形成。(不同类型的冰,从冰二冰十八,都已在实验室不同温度和压力下制出。在布里奇曼的命名法中,普通水冰被称为冰一h)。冰七在很宽的温度和压力范围内保持准稳态,但在120 K(-153摄氏度)以上则转变为低密度无定形冰(LDA)[1]。冰七与液态水和冰六在 355 K 和 2.216 吉帕处具有三相点,融化线至少延伸到715 K(442摄氏度)和 10 吉帕[2]。冰七可通过冲击波的快速压缩在纳秒内形成[3][4],也可通过在环境温度下加压冰六来产生[5]。在 5 吉帕压力附近,冰七将转变为四方晶系的冰七t[6]

像大多数冰相(包括冰一h)一样,冰七的原子位置是无序的[7],此外,原子在多个位置上也无序[8][9][10]。冰七的结构包含两个互穿(但非键合)亚晶格形式的氢键框架[8],氢键穿过水的六聚体中心,因此不连接两个晶格。冰七的密度约为1.65克/厘米3(在2.5吉帕和25摄氏度(华氏77度;298 K)时)[11],由于网格内 O–O 间距较可相互渗透的距离大8%(0.1兆帕时),因此比立方冰密度小两倍。立方晶胞的边长为0.33501纳米(对于D2O,在2.6吉帕和22摄氏度(华氏72度;295K)时),内含两个水分子[9]

冰七是唯一通过简单冷却就可有序化的无序相冰[5][12],它在低于273 K,最高8吉帕的压力下形成(有序的)冰三,一旦超出此压力,冰七到冰八的转换温度会迅速下降,在60吉帕左右时,转换温度降至 0 K[13]。因此,冰七在冰的所有分子相中具有最大的稳定场。构成冰七结构主干的立方氧亚晶格可持续承受至少128吉帕的压力[14],这一压力大大高于水完全失去分子特征,形成冰十的压力。在高压冰中,质子扩散(质子在氧晶格周围的运动)主导着分子的扩散,这一效应现已被直接测量到[15]

自然形成

科学家们推测,冰七可能构成了木卫二以及太阳系外行星(如格利泽436b格利泽1214b)上主要成分为水的海底[16][17]

2018年,在天然钻石包裹体中发现了冰七,证明了冰七在自然界中的存在,为此国际矿物学协会将冰七正式划分为一种独特的矿物[18]。冰七的形成可能是由于钻石晶格的强度和硬度保持了钻石内水在地幔深处时的高压,但表面温度冷却下来,从而产生出所需的高压低温环境[19]

另请查看

  • ,其他晶体形式的冰。

参考文献

  1. ^ S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday and W. G. Marshall, Metastable ice VII at low temperature and ambient pressure, Nature 398 (1999) 681–684.
  2. ^ IAPWS, Release on the pressure along the melting and the sublimation curves of ordinary water substance, 1993 (PDF). [2008-02-22]. (原始内容 (PDF)存档于2008-10-06). 
  3. ^ Dolan, D; Gupta, Y. Nanosecond freezing of water under multiple shock wave compression: Optical transmission and imaging measurements. J. Chem. Phys. 2004, 121 (18): 9050–9057. Bibcode:2004JChPh.121.9050D. PMID 15527371. doi:10.1063/1.1805499. 
  4. ^ Myint, P; Benedict, L; Belof, J. Free energy models for ice VII and liquid water derived from pressure, entropy, and heat capacity relations. J. Chem. Phys. 2017, 147 (8): 084505. Bibcode:2017JChPh.147h4505M. OSTI 1377687. PMID 28863506. doi:10.1063/1.4989582. 
  5. ^ 5.0 5.1 Johari, G. P.; Lavergne, A. & Whalley, E., Dielectric properties of ice VII and VIII and the phase boundary between ice VI and VII, Journal of Chemical Physics, 1974, 61 (10): 4292, Bibcode:1974JChPh..61.4292J, doi:10.1063/1.1681733 
  6. ^ Grande, Zachary M.; et al. Pressure-driven symmetry transitions in dense H2O ice. APS Physics. doi:10.1103/PhysRevB.105.104109. 
  7. ^ Petrenko, V. F.; Whitworth, R. W., The Physics of Ice, New York: Oxford University Press, 2002 .
  8. ^ 8.0 8.1 Kuhs, W. F.; Finney, J. L.; Vettier, C. & Bliss, D. V., Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction, Journal of Chemical Physics, 1984, 81 (8): 3612–3623, Bibcode:1984JChPh..81.3612K, doi:10.1063/1.448109 .
  9. ^ 9.0 9.1 Jorgensen, J. D.; Worlton, T. G., Disordered structure of D2O ice VII from in situ neutron powder diffraction, Journal of Chemical Physics, 1985, 83 (1): 329–333, Bibcode:1985JChPh..83..329J, doi:10.1063/1.449867 .
  10. ^ Nelmes, R. J.; Loveday, J. S.; Marshall, W. G.; et al, Multisite Disordered Structure of Ice VII to 20 GPa, Physical Review Letters, 1998, 81 (13): 2719–2722, Bibcode:1998PhRvL..81.2719N, doi:10.1103/PhysRevLett.81.2719 .
  11. ^ D. Eisenberg and W. Kauzmann, The structure and properties of water (Oxford University Press, London, 1969); (b) The dodecahedral interstitial model is described in L. Pauling, The structure of water, In Hydrogen bonding, Ed. D. Hadzi and H. W. Thompson (Pergamon Press Ltd, London, 1959) pp 1–6.
  12. ^ Note: ice Ih theoretically transforms into proton-ordered ice XI on geologic timescales, but in practice it is necessary to add small amounts of KOH catalyst.
  13. ^ Pruzan, Ph.; Chervin, J. C. & Canny, B., Stability domain of the ice VIII proton-ordered phase at very high pressure and low temperature, Journal of Chemical Physics, 1993, 99 (12): 9842–9846, Bibcode:1993JChPh..99.9842P, doi:10.1063/1.465467 .
  14. ^ Hemley, R. J.; Jephcoat, A. P.; Mao, H. K.; et al, Static compression of H2O-ice to 128 GPa (1.28 Mbar), Nature, 1987, 330 (6150): 737–740, Bibcode:1987Natur.330..737H, S2CID 4265919, doi:10.1038/330737a0 .
  15. ^ Katoh, E. Protonic Diffusion in High-Pressure Ice VII. Science. 15 February 2002,. 29=5558 (5558): 1264–1266. Bibcode:2002Sci...295.1264K. PMID 11847334. S2CID 38999963. doi:10.1126/science.1067746. 
  16. ^ University of Liège (2007, May 16). Astronomers Detect Shadow Of Water World In Front Of Nearby Star. ScienceDaily. Retrieved Jan. 3, 2010, from https://www.sciencedaily.com/releases/2007/05/070516151053.htm.  缺少或|title=为空 (帮助)
  17. ^ David A. Aguilar. Astronomers Find Super-Earth Using Amateur, Off-the-Shelf Technology. Harvard-Smithsonian Center for Astrophysics. 2009-12-16 [January 23, 2010]. (原始内容存档于April 13, 2012). 
  18. ^ Sid Perkins. Pockets of water may lay deep below Earth's surface. Science. 2018-03-08 [March 8, 2018]. (原始内容存档于March 8, 2018). 
  19. ^ Netburn, Deborah. What scientists found trapped in a diamond: a type of ice not known on Earth. Los Angeles Times. [12 March 2018]. (原始内容存档于12 March 2018). 

外部链接