Jump to content

Standard score: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Emphasize the fact that z-score is a signed number
No edit summary
Line 1: Line 1:
{{redirect|Standardize|industrial and technical standards|Standardization}}
{{redirect|Standardize|industrial and technical standards|Standardization}}
{{about||Fisher z-transformation i the [[population mean]] from an individual [[raw score]] and then dividing the difference by the [[statistical population|population]] [[standard deviation]]. This conversion process is called '''standardizing''' or '''normalizing''' (however, "normalizing" can refer to many types of ratios; see [[normalization (statistics)]] for more).
{{about||Fisher z-transformation in statistics|Fisher transformation|Z-values in ecology|Z-value|z-transformation to complex numberT domain|Z-transform|Z-factor in high-throughput screening|Z-factor|Z-score financial analysis tool|Altman Z-score}}
[[Image:Normal distribution and scales.gif|thumb|350px|right|Compares the various grading methods in a normal distribution. Includes: Standard deviations, cumulative percentages, percentile equivalents, Z-scores, [[#T-score|T-scores]], standard nine, percent in [[stanine]]]]

In [[statistics]], the '''standard score''' is the signed number of [[standard deviation]]s an observation or [[data|datum]] is ''above'' the [[mean]]. A positive standard score indicates a datum above the mean, while a negative standard score indicates a datum below the mean. It is a [[dimensionless number|dimensionless quantity]] obtained by subtracting the [[population mean]] from an individual [[raw score]] and then dividing the difference by the [[statistical population|population]] [[standard deviation]]. This conversion process is called '''standardizing''' or '''normalizing''' (however, "normalizing" can refer to many types of ratios; see [[normalization (statistics)]] for more).


Standard scores are also called '''z-values, ''z''-scores, normal scores,''' and '''standardized variables;''' the use of "Z" is because the [[normal distribution]] is also known as the "Z distribution".{{citation needed|date=May 2015}} They are most frequently used to compare a sample to a [[standard normal deviate]], though they can be defined without assumptions of normality.
Standard scores are also called '''z-values, ''z''-scores, normal scores,''' and '''standardized variables;''' the use of "Z" is because the [[normal distribution]] is also known as the "Z distribution".{{citation needed|date=May 2015}} They are most frequently used to compare a sample to a [[standard normal deviate]], though they can be defined without assumptions of normality.

Revision as of 00:59, 18 February 2016

{{about||Fisher z-transformation i the population mean from an individual raw score and then dividing the difference by the population standard deviation. This conversion process is called standardizing or normalizing (however, "normalizing" can refer to many types of ratios; see normalization (statistics) for more).

Standard scores are also called z-values, z-scores, normal scores, and standardized variables; the use of "Z" is because the normal distribution is also known as the "Z distribution".[citation needed] They are most frequently used to compare a sample to a standard normal deviate, though they can be defined without assumptions of normality.

The z-score is only defined if one knows the population parameters; if one only has a sample set, then the analogous computation with sample mean and sample standard deviation yields the Student's t-statistic.

Calculation from raw score

The standard score of a raw score x [1] is

where:

μ is the mean of the population.
σ is the standard deviation of the population.

The absolute value of z represents the distance between the raw score and the population mean in units of the standard deviation. z is negative when the raw score is below the mean, positive when above.

A key point is that calculating z requires the population mean and the population standard deviation, not the sample mean or sample deviation. It requires knowing the population parameters, not the statistics of a sample drawn from the population of interest. But knowing the true standard deviation of a population is often unrealistic except in cases such as standardized testing, where the entire population is measured. In cases where it is impossible to measure every member of a population, the standard deviation may be estimated using a random sample.

It measures the sigma distance of actual data from the average.

The Z value provides an assessment of how off-target a process is operating.

Applications

The z-score is often used in the z-test in standardized testing – the analog of the Student's t-test for a population whose parameters are known, rather than estimated. As it is very unusual to know the entire population, the t-test is much more widely used.

Also, standard score can be used in the calculation of prediction intervals. A prediction interval [L,U], consisting of a lower endpoint designated L and an upper endpoint designated U, is an interval such that a future observation X will lie in the interval with high probability , i.e.

For the standard score Z of X it gives:[2]

By determining the quantile z such that

it follows:

Standardizing in mathematical statistics

In mathematical statistics, a random variable X is standardized by subtracting its expected value and dividing the difference by its standard deviation

If the random variable under consideration is the sample mean of a random sample of X:

then the standardized version is

T-score

A T-score is a standard score Z shifted and scaled to have a mean of 50 and a standard deviation of 10.[3][4][5]

See also

References

  1. ^ Kreyszig 1979, p880 eq(5)
  2. ^ Kreyszig 1979, p880 eq(6)
  3. ^ [1]
  4. ^ [2]
  5. ^ [3]
  • Kreyszig, E. (1979). Advanced Engineering Mathematics (Fourth ed.). Wiley. ISBN 0-471-02140-7.

Further reading